Arrow-Debreu Model – Linear Case

Arrow-Debreu Model

- A set of agents; G set of goods; |A|=m, |G|=n.
- Each agent i comes to market with an initial endowment of goods: (e_{i1},e_{i2}, ..., e_{in})
- May assume wlog that total amount of each good is unit: for 1 ≤ j ≤ n, ∑_{i=1}^m e_{ij} = 1.
- Linear case: Each agent has linear utility for these good: utility of agent i for x_{ij} amount good j: u_{ij}x_{ij}
- Problem: Find prices **p**=(p₁,...,p_m) for goods so that if each agent sells initial endowment at these prices and buys optimal bundle, market clears.

Arrow-Debreu Model

- Generalizes Fisher market
- For agent i, let $a_i = \sum_{j=1}^m e_{ij}$.
- Let $a_{\min} = \min a_i$
- p_{max} : maximum price assigned to a good by an algorithm
- v_{min}, v_{max}: the minimum and maximum utility values
 u_{ij} over all agents and goods.

- We will discuss auction-based algorithm for the linear case of Arrow-Debreu model
- Will find an approximate equilibrium: will find prices \mathbf{p} such that the market clears and each agent gets a bundle that provides utility at least $(1-\epsilon)^2$ the utility of her optimal bundle

- Denote by **p** the vector of prices of goods at any point in the algorithm. Initially, **p**=(1,1,...,1).
- All goods initially unsold
- Each agent is given money = to value of endowment. As p changes, the algorithm recomputes the value of each player's initial endowment and updates her money accordingly
- At any point in the algorithm, part of good j is sold at price p_i and part is sold at price $p_i(1 + \varepsilon)$

- Run of algorithm partitioned into iterations
- An iteration terminates with the price of a good being raised by a factor of $(1 + \varepsilon)$
- Each iteration is partitioned into rounds.
- Within a round, the algorithm considers agents oneby-one in some fixed order, say 1,2,...,m.
- If agent *i* has no surplus money, algorithm moves to next agent. Otherwise, find an optimal good at current prices, say good *j*. Then the algorithm executes operation *outbid*

- Outbid: Buy good *j* from agents who have it at price p_j . Sell it to *i* at price $p_j(1 + \varepsilon)$
- This can end in two ways:
 - 1) Agent i runs out of surplus money. Then the algorithm moves to the next agent.
 - 2) No agent has good j at price p_j anymore. If so, the algorithm raises the price of good j to $p_j(1 + \varepsilon)$, terminates the iteration, recomputes agents' money and starts the next iteration.
- When current round ends, check if total surplus is less than ϵa_{\min} ; if so, alg. terminates.

- At termination, the algorithm gives the unsold goods to an arbitrary agent to ensure that the market clears.
- Outputs all allocations and terminating prices ${\bf p}$
- However, some goods might have been sold at slightly higher price, so agents get only approximately optimal bundles.

Theoretical Guarantees

Lemma 5.23 The number of rounds executed in an iteration is bounded by

$$O\left(\frac{1}{\epsilon}\log\frac{np_{\max}}{\epsilon a_{\min}}\right).$$

Lemma 5.24 The total number of iterations is bounded by

$$O\left(\frac{n}{\epsilon}\log p_{\max}\right).$$

Theoretical Guarantees

Lemma 5.25 *Relative to terminating prices, each agent gets a bundle of goods that provides her utility at least* $(1 - \epsilon)^2$ *times the utility of her optimal bundle.*

Theorem 5.26 The algorithm given above finds an approximate equilibrium for the linear case of the Arrow–Debreu model in time

$$O\left(\frac{mn}{\epsilon^2}\log\frac{nv_{\max}}{\epsilon a_{\min}v_{\min}}\log\frac{v_{\max}}{v_{\min}}\right).$$

