Distributed **Optimization** – Scheduling Problem

- Set of time slots and set of agents
- Each agent requires some number of time slots and has a deadline
- Shared resource
- Each agent has value for completion of task before deadline

- *N* -- set of *n* agents
- *X* -- set of *m* discrete, consecutive time slots
- q = (q₁, q₂, ..., q_m) -- reserve price vector
 v = (v₁, v₂, ..., v_n) -- valuation functions
 - $v_i(F_i) = w_i$ if F_i includes λ_i hours before d_i o otherwise

- Solution vector $F = (F_{\varnothing}, F_1, ..., F_n)$, where F_i is the set of time slots assigned to agent *i*. F_{\varnothing} is the time slots that are not assigned
- Value of solution:

$$V(F) = \sum_{j \mid x_j \in F_{\emptyset}} q_j + \sum_{i \in N} v_i(F_i).$$

Example

- Scheduling jobs on a processor. Eight onehour time slots from 9 am to 5 pm.
- Reserve price: \$3 per hour
- Four jobs, each with its own length, deadline, and worth

job	length (λ)	deadline (d)	worth (w)
1	2 hours	1:00 p.m.	\$10.00
2	2 hours	12:00 p.m.	\$16.00
3	1 hours	12:00 р.м.	\$6.00
4	4 hours	5:00 p.m.	\$14.50

Example

				time slot	agent
				9:00 A.M.	2
job	length (λ)	deadline (d)	worth (w)	10:00 A.M.	2
1	2 hours	1:00 p.m.	\$10.00	11:00 A.M.	1
2	2 hours	12:00 p.m.	\$16.00	12:00 р.м.	1
3	1 hours	12:00 р.м.	\$6.00	13:00 p.m.	4
4	4 hours	5:00 p.m.	\$14.50	14:00 р.м.	4
				15:00 р.м.	4
				16:00 p.m.	4

- NP-complete
- Integer program:

S

maximize

$$\sum_{\subseteq X, i \in N} v_i(S) x_{i,S}$$

subject to

$$\sum_{S \subseteq X} x_{i,S} \leq 1$$
$$\sum_{S \subseteq X: j \in S, i \in N} x_{i,S} \leq x_{i,S} \in \{0,1\}$$

1

 $\forall j \in X$

 $\forall i \in N$

 $\forall S \subseteq X, i \in N$

• Generalize notion of competitive equilibrium to the scheduling problem

Definition 2.3.11 (Competitive equilibrium, generalized form) Given a scheduling problem, a solution F is in competitive equilibrium at prices p if and only if

- For all $i \in N$ it is the case that $F_i = \arg \max_{T \subseteq X} (v_i(T) \sum_{j \mid x_j \in T} p_j)$ (the set of time slots allocated to agent i maximizes his surplus at prices p);
- For all j such that $x_j \in F_{\emptyset}$ it is the case that $p_j = q_j$ (the price of all unallocated time slots is the reserve price); and
- For all j such that $x_j \notin F_{\emptyset}$ it is the case that $p_j \ge q_j$ (the price of all allocated time slots is greater than the reserve price).

• Example

				time slot	agent	price
job	length (λ)	deadline (d)	worth (w)	9:00 a.m.	2	\$6.25
J	8()			10:00 a.m.	2	\$6.25
1	2 hours	1:00 p.m.	\$10.00	11:00 а.м.	1	\$6.25
2	2 hours	12:00 p.m.	\$16.00	12:00 p.m.	1	\$3.25
3	1 hours	12:00 p.m.	\$6.00	13:00 p.m.	4	\$3.25
4	4 hours	5:00 p.m.	\$14.50	14:00 р.м.	4	\$3.25
				15:00 p.m.	4	\$3.25
				16:00 р.м.	4	\$3.25

• Theorem: If a solution *F* to a scheduling problem *C* is in equilibrium at prices *p*, then *F* is optimal.

$$V(F) = \sum_{\substack{j|x_j \in F_{\emptyset}}} q_j + \sum_{i \in N} v_i(F_i)$$

$$= \sum_{\substack{j|x_j \in F_{\emptyset}}} p_j + \sum_{i \in N} v_i(F_i)$$

$$= \sum_{\substack{j|x_j \in X}} p_j + \sum_{i \in N} \left[v_i(F_i) - \sum_{\substack{j|x_j \in F_i}} p_j \right]$$

$$\geq \sum_{\substack{j|x_j \in X}} p_j + \sum_{i \in N} \left[v_i(F_i') - \sum_{\substack{j|x_j \in F_i'}} p_j \right] = V(F')$$

- Competitive equilibrium need not exist
- Consider processor with two slots, 9 am and 10 am, reserve price \$3

job	length (λ)	deadline (d)	worth (w)
1	2 hours	11:00 а.м.	\$10.00
2	1 hour	11:00 а.м.	\$6.00

• Theorem: A scheduling problem has competitive equilibrium solution iff the LP relaxation has an integer solution.

Auction algorithm

foreach *slot* x_j do

 $b_j \leftarrow q_j$ // Set the initial bids to be the reserve price

foreach agent i do

 $F_i \leftarrow \emptyset$

repeat

foreach agent i = 1 to n **do** foreach slot x_i do if $x_i \in F_i$ then $p_i \leftarrow b_i$ else $p_i \leftarrow b_i + \epsilon$ // Agents assume that they will get slots they are currently the high bidder on at that price, while they must increment the bid by ϵ to get any other slot. $S^* \leftarrow \arg \max_{S \subseteq X | S \supseteq F_i} (v_i(S) - \sum_{j \in S} p_j)$ // Find the best subset of slots, given your current outstanding bids // Agent *i* becomes the high bidder for all slots in $S^* \setminus F_i$. foreach *slot* $x_i \in S^* \setminus F_i$ do $b_j \leftarrow b_j + \epsilon$ if there exists an agent $k \neq i$ such that $x_j \in F_k$ then $set F_k \leftarrow F_k \setminus \{x_j\}$ $\prime\prime$ Update the bidding price and current allocations of the other bidders. $F_i \leftarrow S^*$

until F does not change

Auction algorithm

job	length (λ)	deadline (d)	worth (w)
1	2 hours	1:00 p.m.	\$10.00
2	2 hours	12:00 p.m.	\$16.00
3	1 hours	12:00 p.m.	\$6.00
4	4 hours	5:00 p.m.	\$14.50

round	bidder	slots bid on	$\mathbf{F}=(\mathbf{F_1},\mathbf{F_2},\mathbf{F_3},\mathbf{F_4})$	b
0	1	(9,10)	$(\{9, 10\}, \{\emptyset\}, \{\emptyset\}, \{\emptyset\})$	(3.25,3.25,3,3,3,3,3,3)
1	2	(10,11)	$(\{9\}, \{10, 11\}, \{\emptyset\}, \{\emptyset\})$	(3.25,3.5,3.25,3,3,3,3,3)
2	3	(9)	$(\{\emptyset\}, \{10, 11\}, \{9\}, \{\emptyset\})$	(3.5,3.5,3.25,3,3,3,3,3)
:	:	÷	÷	:
24	1	Ø	$(\{11, 12\}, \{9, 10\}, \{\emptyset\}, \\ \{12, 13, 14, 15\})$	(6.25,6.25,6.25,3.25, 3.25,3.25,3.25,3.25)

