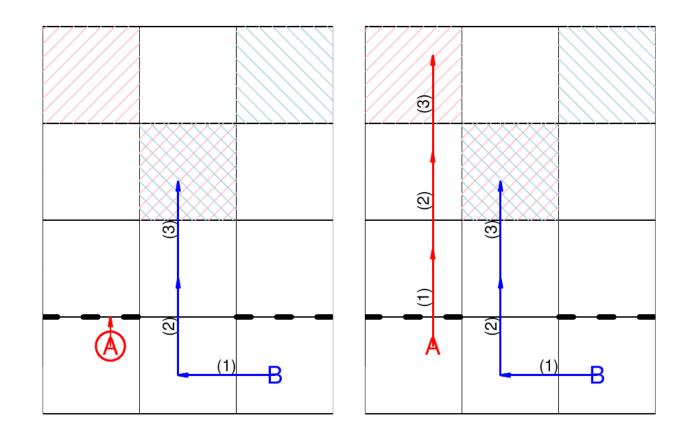
Richer Representations: Stochastic Games

- Repeated game, where players play potentially different games at each iteration
- Transition probability to go to new game based on the chosen action profile
- Rewards can be defined based on the singlestage rewards similar to repeated games

Definition 6.2.1 (Stochastic game) A stochastic game (also known as a Markov game) is a tuple (Q, N, A, P, r), where:

- Q is a finite set of games;
- N is a finite set of n players;
- $A = A_1 \times \cdots \times A_n$, where A_i is a finite set of actions available to player *i*;
- $P: Q \times A \times Q \mapsto [0,1]$ is the transition probability function; $P(q, a, \hat{q})$ is the probability of transitioning from state q to state \hat{q} after action profile a; and
- $R = r_1, \ldots, r_n$, where $r_i : Q \times A \mapsto \mathbb{R}$ is a real-valued payoff function for player *i*.

Example – "Turkey"



Stochastic Games – Strategies and Equilibria

Definition 6.2.1 (Stochastic game) A stochastic game (also known as a Markov game) is a tuple (Q, N, A, P, r), where:

- Q is a finite set of games;
- N is a finite set of n players;
- $A = A_1 \times \cdots \times A_n$, where A_i is a finite set of actions available to player *i*;
- $P: Q \times A \times Q \mapsto [0,1]$ is the transition probability function; $P(q, a, \hat{q})$ is the probability of transitioning from state q to state \hat{q} after action profile a; and
- $R = r_1, \ldots, r_n$, where $r_i : Q \times A \mapsto \mathbb{R}$ is a real-valued payoff function for player *i*.

Strategies

- Let $h_t = (q^0, a^0, q^1, a^1, \dots, a^{t-1}, q^t)$ denote a history of *t* stages of a stochastic game. And let H_t be set of all histories of length *t*
- The set of deterministic strategies: $\prod_{t,H_t} A_i$
- Mixed strategy: Any mixture over deterministic strategies

Restricted Classes of Strategies

Definition 6.2.2 (Behavioral strategy) A behavioral strategy $s_i(h_t, a_{i_j})$ returns the probability of playing action a_{i_j} for history h_t .

Definition 6.2.3 (Markov strategy) A Markov strategy s_i is a behavioral strategy in which $s_i(h_t, a_{i_j}) = s_i(h'_t, a_{i_j})$ if $q_t = q'_t$, where q_t and q'_t are the final states of h_t and h'_t , respectively.

Definition 6.2.4 (Stationary strategy) A stationary strategy s_i is a Markov strategy in which $s_i(h_{t_1}, a_{i_j}) = s_i(h'_{t_2}, a_{i_j})$ if $q_{t_1} = q'_{t_2}$, where q_{t_1} and q'_{t_2} are the final states of h_{t_1} and h'_{t_2} , respectively.

Equilibria

- With discounted reward, every stochastic game has a Nash equilibrium
- *Markov Perfect Equilibrium* consists only of Markov strategies, and is a Nash equilibrium regardless of the start state (analogue to subgame-perfect equilibrium)

Equilibria

- With discounted reward, every stochastic game has a Nash equilibrium
- *Markov Perfect Equilibrium* consists only of Markov strategies, and is a Nash equilibrium regardless of the start state (analogue to subgame-perfect equilibrium)

Theorem 6.2.5 Every *n*-player, general-sum, discounted-reward stochastic game has a Markov perfect equilibrium.

Stochastic Games – Computing Equilibria

Definition 6.2.1 (Stochastic game) A stochastic game (also known as a Markov game) is a tuple (Q, N, A, P, r), where:

- Q is a finite set of games;
- N is a finite set of n players;
- $A = A_1 \times \cdots \times A_n$, where A_i is a finite set of actions available to player *i*;
- $P: Q \times A \times Q \mapsto [0,1]$ is the transition probability function; $P(q, a, \hat{q})$ is the probability of transitioning from state q to state \hat{q} after action profile a; and
- $R = r_1, \ldots, r_n$, where $r_i : Q \times A \mapsto \mathbb{R}$ is a real-valued payoff function for player *i*.

Computing Nash Equilibria • Q. Is there a polynomial-time procedure to

- Q. Is there a polynomial-time procedure to compute a Nash equilibrium of a stochastic game?
 - There is an LP formulation for solving (single-player) MDPs
- There is an LP formulation of a single player controls the transitions:

Definition 6.2.8 (Single-controller stochastic game) A stochastic game is singlecontroller if there exists a player i such that $\forall q, q' \in Q, \forall a \in A, P(q, a, q') = P(q, a', q')$ if $a_i = a'_i$.

Computing Nash Equilibria • There is also LP formulation to find

- There is also LP formulation to find equilibrium if:
 - state and action profile have independent effects on the reward achieved by each agent
 - transition function only depends on action profile

Definition 6.2.9 (SR-SIT stochastic game) A stochastic game is separable reward state independent transition (*SR-SIT*) if the following two conditions hold:

- there exist functions α, γ such that $\forall i, q \in Q, \forall a \in A$ it is the case that $r_i(q, a) = \alpha(q) + \gamma(a)$; and
- $\forall q, q', q'' \in Q, \forall a \in A \text{ it is the case that } P(q, a, q'') = P(q', a, q'').$