
Fisher’s Linear Case

• Fisher’s Linear Model
• Existence and uniqueness of equilibrium prices
• An algorithm to compute equilibrium prices in

polynomial time

This Lecture

• A – set of goods; B – set of buyers

• Buyer i has money e
i

Each good j has amount b
j

• Buyer i obtains utility u
ij
 for unit amount of good j

● Total utility for a bundle:

• Once the prices p
1
, …, p

n
 are fixed, a buyer is only

interested in the goods that maxmize u
ij
 / p

j

• optimal basket of goods
• Prices are market clearing or equilibrium if each

buyer can be assigned an optimal basket such that
there is no surplus or deficiency of any good

Fisher’s Linear Model

• By rescaling, can assume each b
j
 = 1

• u
ij
’s and e

i
’s are in general rational, but we can

rescale to ensure they are integral.
• Mild assumption: each good has a potential buyer.

That is, for each j, there exists i such that u
ij
 > 0

• Equilibrium allocations, it turns out, can be
captured as optimal solution to a convex program:
the Eisenberg-Gale convex program.

Fisher’s Linear Model

Considerations
• The program must have as constraints the packing

constraints on the x
ij
’s

• The objective function should maximize the utilities, and
● If utilities of any buyer are scaled by a constant, should

not change the allocation
● If a buyer is split into two buyers with the same utility,

the sum of the optimal allocations to the new buyers
should be an optimal allocation for the original

Considerations
• Money-weighted geometric mean satisfies these

requirements:

• Equivalently:

Eisenberg-Gale convex
program

Karush-Kuhn-Tucker
conditions

• p
j
’s are the Lagrange variables wrt the second set of

conditions – interpret as prices
• From these conditions, one can derive that an

optimal solution to the program must satisfy market
clearing conditions

Karush-Kuhn-Tucker
conditions

Karush-Kuhn-Tucker
conditions

• But how to compute eq. prices and allocations?

Checking if Given
Prices are

Equilibrium Prices

• Let p = (p
1
, …, p

n
) denote a vector of prices

• Q. Is p the equilibrium price vector? If so, can we
find equilibrium allocations for the buyers?

• At prices p, buyer i derives u
ij
 / p

j
utility per unit

money spent on good j.
• Define her bang-per-buck:
• Her bang-per-buck goods are the ones she’d like to

buy at current prices.
• Define bipartite graph G on (A,B): add edge (i,j) iff.

good i is a bang-per-buck good of buyer j

The Equality Subgraph

The Network N(p)

The Network N(p)

• If f is a feasible flow, allocate goods to buyers as
follows: if edge (j,i) has f(j,i) units of flow, buyer i
buys f(j,i) / p

j
amount of good j

• Then a maxflow computation yields the most
amount of goods that can be sold within the budgets
of the buyers (when each buyer buys only bang-per-
buck goods)

• Q. Is p the equilibrium price vector? If so, can we
find equilibrium allocations for the buyers?

Two Crucial Ingredients
of the Algorithm
• Related to primal-dual schema for approximation algorithms

• Start with very low prices, below equilibrium for each good

• Construct N(p) for current prices

• Buyers have surplus; raise prices to reduce the surplus

• When surplus is zero, algorithm terminates

• Questions
● How do we ensure equilibrium price of no good is

exceeded?
● How do we ensure surplus money decreases fast enough?

Two Crucial Ingredients
of the Algorithm
• m

i
– money spent by buyer i

• Buyer i’s surplus:
• Relax the third and fourth KKT conditions:

• Potential function:

Two Crucial Ingredients
of the Algorithm
• m

i
– money spent by buyer i

• Buyer i’s surplus:
• Relax the third and fourth KKT conditions:

• Potential function:

Similarity to Primal-Dual

• Raise prices (dual variables) greedily until the KKT
conditions are satisfied

• However, satisfies KKT conditions continuously,
whereas in primal-dual schema, at least one
complementary slackness condition is satisfied in
each step

Tight Sets and the
Invariant
• Let p be the current prices
• For set S of goods, p(S) is the total value of the

goods (sum of prices of goods in S)
• For set T of buyers, m(T) is total money possessed

by buyers in T:
• For set S of goods, define its neighborhood in N(p):

• S is a tight set iff.
● Increasing prices of goods in S further might

result in exceeding equilibrium price of some good

Tight Sets and the
Invariant
• A systematic way to ensure equilibrium prices are

not exceeded:

Balanced Flows in N(p)

• Denote current network N(p) by N; assume it
satisfies the invariant

• Given feasible flow f, let R(f) denote the residual
graph wrt f

• Surplus of buyer i:
● residual capacity of edge (i,t)

• Surplus vector:

• A balanced flow: flow that minimizes the l
2
norm of

the surplus vector
• A balanced flow must be a max flow

Balanced Flows in N(p)

Finding a Balanced Flow

• Continuously reduce the capacities of all edges that go
from B to t, until capacity of cut

is the same as the cut

• Let resulting network be N’ – let f’ be a max flow in N’.
Find a maximal s,t mincut in N’, say (S,T)

The Main Algorithm

• Initialize prices so the Invariant holds:

• Idea: Raise prices of goods desired by buyers with a lot of
surplus money. When a subset of these goods goes tight,
surplus of some of these buyers vanishes, leading to
substantial progress. Property 1 provides a condition to
keep working with N(p) despite its changes

The Main Algorithm

• Run of the algorithm is partitioned into phases. Each
phase ends with a new set going tight

• Phase starts with computation of a balanced flow
● If balance flow algorithm terminates with Case 1, then

by Lemma 5.2 prices are in equilibrium and algorithm
halts

● Otherwise, let δ be the maximum surplus of buyers; and
let I be set of buyers with this surplus; let J be the set of
goods incident with I

The Main Algorithm

The Main Algorithm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

