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Rationalizability

 Intuitively: strategy is rationalizable if it is
a best response to beliefs about strategies
of other players

* But it cannot be an arbitrary belief, must

take into account rationality




Rationalizability

Heads

Tails

Figure 3.6: Matching Pennies game.

* Q. Is playing ‘heads’ rationalizable?

AP




Rationalizability

C D

C |-1,-1| -4,0

D 0,—4 -3,—3

Figure 3.3: The TCP user’s (aka the Prisoner’s) Dilemma.

* Q. Is playing ‘C’ rationalizable?




Rationalizability

 Formal definition:

* For each player 1, define infinite
sequence:

S0 =

st ={s,:s.1s best response to
1 1

some s_; € [, CH(S* 1)}

Definition 3.4.11 (Rationalizable strategies) 7The rationalizable strategies for player

iare(),—, Sr.
AI‘M




Rationalizability

* Nash equilibrium strategies are always
rationalizable

* In 2-player games, rationalizable
strategies are exactly those strategies that

survive iterated removal of strictly
dominated strategies.
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Dominated Strategies

Definition 3.4.8 (Domination) Let s; and s; be two strategies of player i, and S _;
the set of all strategy profiles of the remaining players. Then

1. s; strictly dominates s’ if for all s_; € S_,, it is the case that u;(s;,S_;)
!
u;(sh, s_;).

. 8; weakly dominates s; if for all s_; € S_,, it is the case that u;(S;,5_;)
u; (s, s_;), and for at least one s_; € S_,, it is the case that u;(S;,5_;)
!
w;(sh, s_;).

. s; very weakly dominates s’ if forall s_; € S_,, it is the case that u;(S;, S_;) >
!
w; (S5, 8_;).




Dominated Strategies

Definition 3.4.9 (Dominant strategy) A strategy is strictly (resp., weakly; very
weakly) dominant for an agent if it strictly (weakly; very weakly) dominates any
other strategy for that agent.

Definition 3.4.10 (Dominated strategy) A strategy s, is strictly (weakly; very weakly)
dominated for an agent i if some other strategy s strictly (weakly; very weakly)

dominates s;.




Dominated Strategies

L & R

3.1 0,1 0,0

1,1 | 1,1 | 5,0

0,1 4,1 0,0

Figure 3.15: A game with dominated strategies.




Dominated Strategies

L C

3,1 | 0,1

1,1 | 1,1

0,1 | 4,1

Figure 3.16: The game from Figure 3.15 after removing the dominated strategy R.

AP




Dominated Strategies

L C

3,1 | 0,1

0,1 | 4,1

Figure 3.17: The game from Figure 3.16 after removing the dominated strategy
M.
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MinimaXx Regret




MinimaXx Regret

Definition 3.4.5 (Regret) An agent i’s regret for playing an action a; if the other
agents adopt action profile a_; is defined as

[{{peaﬁ ui(a;, a_fs)] — ui(a;, a_;).

Definition 3.4.6 (Max regret) An agent 1’s maximum regret for playing an action
a; is defined as

aEleaj{_@ ([?Eaj{ u;(a;, a,!;)] — u;(a;, ai)> .




MinimaXx Regret

Definition 3.4.7 (Minimax regret) Minimax regret actions for agent i are defined
as

arg min [ max ([max u;(as, a,,;)] — u;(a;, aJ)] :

* Q. Why sufficient to look at actions, as
opposed to strategies?




MinimaXx Regret

Definition 3.4.7 (Minimax regret) Minimax regret actions for agent i are defined
as

arg min [ max ([max u;(as, a,,;)] — u;(a;, aJ)] :

* Q. Why sufficient to look at actions, as
opposed to strategies?
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Correlated Equilibrium

LW WL

LW | 2.1 0,0

WL | 0,0 1,2

Figure 3.18: Battle of the Sexes game.

* Imagine players condition their results on
a coin flip: WL if heads; LW if tails

* Expected payoff: 1.5 for each player m




Correlated Equilibrium

Definition 3.4.12 (Correlated equilibrium) Given an n-agent game G = (N, A, u),
a correlated equilibrium is a tuple (v, 7, o), where v is a tuple of random variables

v = (vq,...,0,) with respective domains D = (D, ..., D,), 7 is a joint distri-
bution over v, 0 = (04, ...,0,) is a vector of mappings o; : D; — A,, and for
each agent i and every mapping o, : D; — A, it is the case that

* Mapping is to an action, but allowing
mixed strategies adds no greater generality

7




Correlated Equilibrium

Definition 3.4.12 (Correlated equilibrium) Given an n-agent game G = (N, A, u),
a correlated equilibrium is a tuple (v, 7, o), where v is a tuple of random variables

v = (vq,...,0,) with respective domains D = (D, ..., D,), 7 is a joint distri-
bution over v, 0 = (04, ...,0,) is a vector of mappings o; : D; — A,, and for
each agent i and every mapping o, : D; — A, it is the case that

* Mapping is to an action, but allowing
mixed strategies adds no greater generality

» Every convex combination of C.E.s is a m




Correlated Equilibrium

Theorem 3.4.13 For every Nash equilibrium o™ there exists a corresponding cor-
related equilibrium o.
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Trembling-hand perfect
eq.

Definition 3.4.14 (Trembling-hand perfect equilibrium) A mixed-strategy profile

s is a (trembling-hand) perfect equilibrium of a normal-form game G if there ex-
ists a sequence s°, s* ., . . . of fully mixed-strategy profiles such that lim,,_, .. s" = s,
and such that for each s* in the sequence and each player i, the strategy s; is a

best response to the strategies s* ..

Perfect eq. is stronger than N.E.

Can require to be robust against small
errors (“trembling hand”) m




e-Nash Equilibrium

Definition 3.4.15 (e-Nash) Fix ¢ > 0. A strategy profile s = (sq,...,8,) is an
e-Nash equilibrium if, for all agents i and for all strategies s; # s;, u;(S;,5_;) >
u;(sh,s_;) — €

* Advantages:
* Always exist
* Can be computationally useful

* But not necessarily close to a Nash
Equilibrium




e-Nash Equilibrium

Definition 3.4.15 (e-Nash) Fix ¢ > 0. A strategy profile s = (sq,...,8,) is an
e-Nash equilibrium if, for all agents i and for all strategies s; # s;, u;(S;,5_;) >
u;(sh,s_;) — €

* Advantages:
* Always exist
* Can be computationally useful

* But not necessarily close to a Nash
Equilibrium




e-Nash Equilibrium

L R

1,1 0,0

14 £,1 | 500,500

Figure 3.19: A game with an interesting e-Nash equilibrium.
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