Perfect-Information, Extensive-Form Games

Extensive Form Game

- Informally speaking, a tree, where each node represents the choice of one of the players. So, turn-based game, with a concept of order of actions
- Leaves represent final outcomes over which each player has a utility function

Definition 5.1.1 (Perfect-information game) A (finite) perfect-information game (in extensive form) is a tuple $G = (N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- *N* is a set of *n* players;
- A is a (single) set of actions;
- *H* is a set of nonterminal choice nodes;
- Z is a set of terminal nodes, disjoint from H;
- $\chi: H \mapsto 2^A$ is the action function, which assigns to each choice node a set of possible actions;
- $\rho: H \mapsto N$ is the player function, which assigns to each nonterminal node a player $i \in N$ who chooses an action at that node;
- $\sigma: H \times A \mapsto H \cup Z$ is the successor function, which maps a choice node and an action to a new choice node or terminal node such that for all $h_1, h_2 \in H$ and $a_1, a_2 \in A$, if $\sigma(h_1, a_1) = \sigma(h_2, a_2)$ then $h_1 = h_2$ and $a_1 = a_2$; and
- $u = (u_1, \ldots, u_n)$, where $u_i : Z \mapsto \mathbb{R}$ is a real-valued utility function for player *i* on the terminal nodes *Z*.

Figure 5.1: The Sharing game.

Strategies and Equilibria in Extensive-Form Games

Strategies

• A pure strategy is complete specification of choice of made of each player at every node

Definition 5.1.2 (Pure strategies) Let $G = (N, A, H, Z, \chi, \rho, \sigma, u)$ be a perfectinformation extensive-form game. Then the pure strategies of player *i* consist of the Cartesian product $\prod_{h \in H, \rho(h)=i} \chi(h)$.

Figure 5.2: A perfect-information game in extensive form.

 $S_1 = \{ (A, G), (A, H), (B, G), (B, H) \}$ $S_2 = \{ (C, E), (C, F), (D, E), (D, F) \}$

 $(C,E) \quad (C,F) \quad (D,E) \quad (D,F)$

(A,G)	3, 8	3, 8	8, 3	8, 3
(A,H)	3, 8	3, 8	8, 3	8, 3
(B,G)	5, 5	2, 10	5, 5	2, 10
(B,H)	5, 5	1, 0	5, 5	1, 0

Figure 5.3: The game from Figure 5.2 in normal form.

• Every perfect-information, EF game has normal-form representation. But note redundancy

- However, not every normal-form game has a extensive-form representation
- Consider Prisoner's Dilemma

Figure 3.3: The TCP user's (aka the Prisoner's) Dilemma.

Theorem 5.1.3 *Every (finite) perfect-information game in extensive form has a pure-strategy Nash equilibrium.*

Subgame-Perfect Equilibria

Example Game

Figure 5.2: A perfect-information game in extensive form.

Pure-Strategy Nash Equilibria

(A, G)	3, 8	3,8	8, 3	8, 3
(A, H)	3, 8	3,8	8, 3	8, 3
(B, G)	5, 5	2, 10	5, 5	2, 10
(B, H)	5,5	1,0	5, 5	1, 0

(C, E) (C, F) (D, E)

(D, F)

Figure 5.4: Equilibria of the game from Figure 5.2.

Figure 5.5: Two out of the three equilibria of the game from Figure 5.2: $\{(A,G), (C,F)\}$ and $\{(B,H), (C,E)\}$. Bold edges indicate players' choices at each node.

Pure-Strategy Nash Equilibria

Definition 5.1.4 (Subgame) Given a perfect-information extensive-form game G, the subgame of G rooted at node h is the restriction of G to the descendants of h. The set of subgames of G consists of all of subgames of G rooted at some node in G.

Definition 5.1.5 (Subgame-perfect equilibrium) *The* subgame-perfect equilibria (SPE) of a game G are all strategy profiles s such that for any subgame G' of G, the restriction of s to G' is a Nash equilibrium of G'.

Computing equilibria: backward induction

How to compute SPE?

Figure 5.2: A perfect-information game in extensive form.

Backward Induction

function BACKWARDINDUCTION (node h) returns u(h)if $h \in Z$ then $\lfloor return u(h)$ // h is a terminal node $best_util \leftarrow -\infty$ forall $a \in \chi(h)$ do $\lfloor util_at_child \leftarrow BACKWARDINDUCTION(\sigma(h, a))$ if $util_at_child_{\rho(h)} > best_util_{\rho(h)}$ then $\lfloor best_util \leftarrow util_at_child$ return $best_util$

Figure 5.6: Procedure for finding the value of a sample (subgame-perfect) Nash equilibrium of a perfect-information extensive-form game.

Backward Induction

- In principle, a sample SPE is effectively computable
- In practice, game tree not enumerated in advance
- Extensive form representation of chess has around 10¹⁵⁰ nodes

Alpha-Beta Pruning

 In 2-player, zero-sum game, we can prune away subtrees without examining the entire subtree

Figure 5.8: An example of alpha-beta pruning. We can backtrack after expanding the first child of the right choice node for player 2.

Alpha-Beta Pruning

- In 2-player, zero-sum game, we can prune away subtrees without examining the entire subtree
- Best case: O(b^{m/2}) time complexity. Random case: O(b^{3m/4})
- Exponential improvement, but still infeasible for something like chess
- In practice, engines do a limited depth alpha-beta pruning, using some evaluation function for an internal node as if it were a leaf

Backward Induction, Criticism

Figure 5.9: The Centipede game.

