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Lemke-Howson
Algorithm -
Algebraic Approach



Lemke-Howson
Algorithm

* 2-player, general sum games

* Algorithm is for solving linear
complementarity programs

* Searches vertices of strategy simplices
(like the simplex algorithm for solving
LPs)

* Best response condition: Let B be the payoff matrix for
Player 1. Let x, y be mixed strategies for player 1, 2. xis a

best response iff

x.>0— (By).=u=max{ (By), | kinA} AT&




Lemke-Howson - a
graphical exposition
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Figure 4.1: A game for the exposition of the Lemke—Howson algorithm.
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graphical exposition
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Lemke-Howson -

Properties

* Guaranteed to find a NE
* Alternative proot of the existence of NE
* Path after initial move is unique. Only

nondeterminism 1s in first move

* All paths from the starting point to a NE
can be exponential (algorithm is provably
exponential)

* No way to assess how close we are to a NE
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Lemke-Howson -
Implementation

* How to compute vertices / labels of the
strategy simplices?
* We will only compute the vertices along

the path traveled in online fashion




Lemke-Howson -
Pseudocode

initialize the two systems of equations at the origin
arbitrarily pick one dependent variable from one of the two systems. This
variable enters the basis.
repeat
identify one of the previous basis variables which must leave, according
to the minimum ratio test. The result is a new basis.
if this basis is completely labeled then
| return the basis / we have found an equilibrium.

else
| the variable dual to the variable that last left enters the basis.

Figure 4.5: Pseudocode for the Lemke—Howson algorithm.




The LCP Formulation

> wi(al,db) - 5§+ 7] = U Vi € Ay
ke As
Z wo(ad,al) -8 +rk=U; Vk € A,

FEA;

Zs{:L ngzl

JEAL ke Ao

sl >0, sk>0 Vj € Ay, Vk € A,
ri>0, ry>0 Vi e Ay, Yk € A,
i8] =0, sFsf=0 Vj € Ay, Vk € A,




Lemke-Howson -
Example
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Figure 4.1: A game for the exposition of the Lemke—Howson algorithm.
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Lemke-Howson -
Example

« Recall: only one of r, x,” can be nonzero

* All slacks nonzero - all probs. = 0.

1 —6ys
1, =D sshyt
Yy e

V ¥ ¥
=3y, =3

i
4x 3

3 P
_1.-}.'.{.-:_';
- For first move, arbitrarily pick x,’ to enter
« Since s, clashes with x.’, s, must leave. (4.21) becomes:

l:ri _l
f
Ty =




Lemke-Howson -
Example

1 —6ys
1 -2y, -5y (4.20)

(4.22)

nt
Ly

By the algorithm rule, since s, just left, y.,' must be next to enter

Allof r, r,, r, clash with y,’

Have to apply the minimum ratio test
v=c+qu+1
u is entering variable, c is a constant, T is term with all other variables
Variable to leave satisfies min |g/c| ATM
In this case, r i




Lemke-Howson -

nt
Lo

r, leaves, yielding 4.23

So x,’ must enter. Clashes with s, only. So s, leaves. 4.22 updates to:

f
:1-:- Y _eg

L | 5 = 4.24
:I:fz — i : l.)l" _lq ( | )

255

Next, y,” must enter. r2 and r3 clash, min. ratio gives r2 must leave

AP




Lemke-Howson -

On the LHS, a non-zero variable appears for each action (i.e. either that
action is played, or it has a slack and is suboptimal).

So we’ve solved the LCP. All non-basis variables are 0, so we get X’ = (1, %2,
0); y’' = (1/12,1/6). Renormalizing to get a probability distribution, x’ = (2/3,

1/3, 0): y’ = (1/3,2/3).
AI‘M

<x', y’> is our Nash equilibrium.




Support-
Enumeration Method



Heuristic - Searching the
space of supports

Suppose we already knew the support of the Nash
equilibrium. That is, which actions are best
response.

Could we then solve for the probabilities we should
assign to each action?

Yes — we can write an LP
So, the CNE problem is reduced to guessing the

right support
AlM
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Feasibility Program

Given a support profile 0 = (o, 03)

Z pla_j)u;(a;,a_;) = v; Vie {1,2},a; € o, (4.26)

Mg EF g

Z pla_j)u;(a;,a_;) < wv; Vi e {1,2},a; € o, 4.27)

o S Y o R
Vi € {1,2}5(11' e 3¢ (428)
Vi € {1.{.2},[‘11 &fﬂ'i (429)

Vi e {1,2} (4.30)
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Eliminating Some
Actions

* We can safely prune any actions that are strictly
worse than another given the current support:

Definition 4.2.2 (Conditionally strictly dominated action) An action a; € A; is
conditionally strictly dominated, given a profile of sets of available actions R_; C
A_, for the remaining agents, if the following condition holds: Ja’. € A; Ya_; €
R_;: wi(a;,a_;) <uia,a_;).
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Support-Enumeration
Method

forall support size profiles x = (x1, x3), sorted in increasing order of, first,
. |71 — 2| and, second, (x1 + x,) do
forall oy C A, s.t. |oq| = 2, do
Al « {as € As not conditionally dominated, given o, }
if Ao, € oy conditionally dominated, given A then
forall o, C A) s.t. |03 = x5 do
if Aa, € o, conditionally dominated, given o, andTGS is
satisfiable for o0 = (0, 0,) then
| return the solution found; it is a NE

Figure 4.6: The SEM algorithm

Faster than Lemke-Howson on most games in the

literature. m
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