Solution Concepts for Normal-Form Games – Intro

Solution Concepts

- In single agent settings, there is the notion of *optimal strategy*
- In multiagent setting, situation is more complex. Best strategy depends on the strategies of other agents
- Solution concepts certain subsets of outcomes that are interesting
- Pareto optimality, Nash equilibrium

Pareto Optimality

- For an outside observer, can some outcomes of a game be said to be better than another?
- Sum of agents utilities? Except utility functions only encode preferences, not directly comparable between agents
- However, if all agents' utilities increase, that is clearly better

Pareto Optimality

Definition 3.3.1 (Pareto domination) Strategy profile s Pareto dominates strategy profile s' if for all $i \in N$, $u_i(s) \ge u_i(s')$, and there exists some $j \in N$ for which $u_j(s) > u_j(s')$.

Definition 3.3.2 (Pareto optimality) Strategy profile s is Pareto optimal, or strictly Pareto efficient, if there does not exist another strategy profile $s' \in S$ that Pareto dominates s.

$$C$$
 D
 C $-1, -1$ $-4, 0$
 D $0, -4$ $-3, -3$

Figure 3.3: The TCP user's (aka the Prisoner's) Dilemma.

Pareto Optimality

- Every game must have at least one Pareto optimum. And must have one with pure strategies
- Some games will have multiple in zerosum games, all strategy profiles are Pareto optimal
- In common-payoff games, all Pareto optimal strategy profiles have the same payoffs

Solution Concepts for Normal-Form Games – Nash Equilibrium

Nash Equilibrium

- Suppose a player knew how the other players were going to play
- Then the optimal strategy is simple, like single agent setting

Definition 3.3.3 (Best response) Player i's best response to the strategy profile s_{-i} is a mixed strategy $s_i^* \in S_i$ such that $u_i(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i})$ for all strategies $s_i \in S_i$.

Nash Equilibrium

Definition 3.3.4 (Nash equilibrium) A strategy profile $s = (s_1, \ldots, s_n)$ is a Nash equilibrium if, for all agents i, s_i is a best response to s_{-i} .

Definition 3.3.5 (Strict Nash) A strategy profile $s = (s_1, \ldots, s_n)$ is a strict Nash equilibrium if, for all agents i and for all strategies $s'_i \neq s_i$, $u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$.

Definition 3.3.6 (Weak Nash) A strategy profile $s = (s_1, \ldots, s_n)$ is a weak Nash equilibrium if, for all agents i and for all strategies $s'_i \neq s_i$, $u_i(s_i, s_{-i}) \geq$

Examples

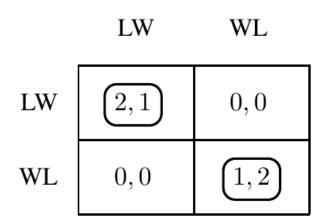


Figure 3.9: Pure-strategy Nash equilibria in the Battle of the Sexes game.

• Battle of the Sexes also has a mixed strategy equilibrium:

Examples

	Heads	Tails
Heads	1, -1	-1, 1
Tails	-1, 1	1, -1

Figure 3.10: The Matching Pennies game.

How to interpret mixed strategies?

Consider penalty kick in soccer game

- Possible interpretations:
 - Roll dice in head
 - Each player's assessment of how likely the other players are to deterministically select an action
 - Game played many times repeatedly
 - Pure-strategy agents selected randomly from larger pool

Solution Concepts for Normal-Form Games – Existence of Nash Equilibrium

Brouwer Fixed Point Theorem

Definition 3.3.7 (Convexity) A set $C \subset \mathbb{R}^m$ is convex if for every $x, y \in C$ and $\lambda \in [0,1]$, $\lambda x + (1-\lambda)y \in C$. For vectors x^0, \ldots, x^n and nonnegative scalars $\lambda_0, \ldots, \lambda_n$ satisfying $\sum_{i=0}^n \lambda_i = 1$, the vector $\sum_{i=0}^n \lambda_i x^i$ is called a convex combination of x^0, \ldots, x^n .

Definition 3.3.15 (Compactness) A subset of \mathbb{R}^n is compact if the set is closed and bounded.

• Let *K* be a convex, compact set of Euclidean space. Then any continuous function from *K* to *K* has a fixed point.

Existence of Nash equilibria

Theorem 3.3.22 (Nash, 1951) Every game with a finite number of players and action profiles has at least one Nash equilibrium.

Proof. Given a strategy profile $s \in S$, for all $i \in N$ and $a_i \in A_i$ we define

$$\varphi_{i,a_i}(s) = \max\{0, u_i(a_i, s_{-i}) - u_i(s)\}.$$

We then define the function $f: S \mapsto S$ by f(s) = s', where

$$s_{i}'(a_{i}) = \frac{s_{i}(a_{i}) + \varphi_{i,a_{i}}(s)}{\sum_{b_{i} \in A_{i}} s_{i}(b_{i}) + \varphi_{i,b_{i}}(s)}$$

$$= \frac{s_{i}(a_{i}) + \varphi_{i,a_{i}}(s)}{1 + \sum_{b_{i} \in A_{i}} \varphi_{i,b_{i}}(s)}.$$
(3.5)

Existence of Nash equilibria

Theorem 3.3.22 (Nash, 1951) Every game with a finite number of players and action profiles has at least one Nash equilibrium.

Solution Concepts for Normal-Form Games – Maxmin

Solution Concepts

- In single agent settings, there is the notion of *optimal strategy*
- In multiagent setting, situation is more complex. Best strategy depends on the strategies of other agents
- Solution concepts certain subsets of outcomes that are interesting
- Pareto optimality, Nash equilibrium

Maxmin Value

Definition 3.4.1 (Maxmin) The maxmin strategy for player i is $\arg\max_{s_i}\min_{s_{-i}}u_i(s_i,s_{-i})$, and the maxmin value for player i is $\max_{s_i}\min_{s_{-i}}u_i(s_i,s_{-i})$.

Maxmin Value

Definition 3.4.1 (Maxmin) The maxmin strategy for player i is $\arg\max_{s_i}\min_{s_{-i}}u_i(s_i,s_{-i})$, and the maxmin value for player i is $\max_{s_i}\min_{s_{-i}}u_i(s_i,s_{-i})$.

		Husband	
		LW	WL
Wife	LW	2,1	0,0
	WL	0,0	1, 2

Figure 3.8: Battle of the Sexes game.

Minmax Value

Definition 3.4.2 (Minmax, two-player) In a two-player game, the minmax strategy for player i against player -i is $\arg\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$, and player -i's minmax value is $\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$.

Definition 3.4.3 (**Minmax**, n-**player**) In an n-player game, the minmax strategy for player i against player $j \neq i$ is i's component of the mixed-strategy profile s_{-j} in the expression $\arg\min_{s_{-j}}\max_{s_j}u_j(s_j,s_{-j})$, where -j denotes the set of players other than j. As before, the minmax value for player j is $\min_{s_{-j}}\max_{s_j}u_j(s_j,s_{-j})$.

Minimax Theorem

Theorem 3.4.4 (Minimax theorem (von Neumann, 1928)) In any finite, two-player, zero-sum game, in any Nash equilibrium⁵ each player receives a payoff that is equal to both his maxmin value and his minmax value.

