LECTURE S

Strings

STRINGS

 We’ve already introduced the string data type a few lectures ago. Strings are subtypes of
the sequence data type.

» Strings are written with either single or double quotes encasing a sequence of characters.

sl = 'This e it
sZ2 = "Python 1s so awesome."

* Note that there is no character data type in Python. A character is simply represented as a
string with one character.

ACCESSING STRINGS

» As a subtype of the sequence data type, strings can be accessed element-wise as
they are technically just sequences of character elements.

* We can index with typical bracket notation, as well as perform slicing.

>>> sl "This 7 s/ ool I 55

>>> s2 = "Python 1s so awesome."
>>> print (sl1l[3])

S

>>> print (s2[5:15])

n -1 SESiegs =

MODIFYING STRINGS

» Strings are immutable — you cannot update the value of an existing string object.

However, you can reassign your variable name to a new string object to perform an

“Python is so awesome.”

“update”.
sl 2
>>> sl = "Python 1s so awesome."
>>> sl = "Python IFRs TGS

“Python is so awesome.”

|

“Python is so cool.”

MODIFYING STRINGS

Alternatively, we could have done the following:

>>> sl = "Python 1s so awesome."
>>> sl = sl [l e

This will create a substring “Python is so ”, which is concatenated with “cool.”, stored in
memory and associated with the name sl.

The “+” operator can be used with two string objects to concatenate them together. The “*”
operator can be used to concatenate multiple copies of a single string object.

We also have in and not in available for testing character membership within a string.

ESCAPE CHARACTERS

As a side note, there are a number of escape characters supported by Python strings.
The most common ones are:

‘An’ — newline
‘\s’ — space

‘\t’ — tab

BUILT-IN STRING METHODS

* Python includes a number of built-in string methods that are incredibly useful for
string manipulation. Note that these return the modified string value; we cannot
change the string’s value in place because they’re immutable!

e s.upper() and s.lower ()

>>> sl = "Python 1s so awesome."
>>> (sl.upper())
PYTHON IS SO AWESOME.
>>> (sl.lower())

python i1is so awesome.

BUILT-IN STRING METHODS

e s.isalpha(), s.isdigit(), s.isalnum(), s.isspace() —returnTrue if
string s is composed of alphabetic characters, digits, either alphabetic and/or digits,
and entirely whitespace characters, respectively.

* s.islower (), s.isupper () —returnTrue if string s is all lowercase and all
uppercase, respectively.

>>> "WHOA" . isupper ()

True
>>> "12345" .isdigit ()
True
>>> " \n ".isspace()
True

>>> "hello!".isalpha/()
False

BUILT-IN STRING METHODS

str.split([sepl, maxsplit]]) - Splitstrinto a list of substrings. The sep argument
indicates the delimiting string (defaults to consecutive whitespace). The maxsplit
argument indicates the maximum number of splits to be done (default is -1).

str.rsplit([sep[, maxsplit]]) — Splitstrinto a list of substrings, starting from the
right.
str.strip([chars]) —Return a copy of the string str with leading and trailing

characters removed. The chars string specifies the set of characters to remove (default is
whitespace).

str.rstrip([chars]) —Return a copy of the string str with only trailing characters
removed.

BUILT-IN STRING METHODS

>>> "Python programisiticSsereitasl " "split ()
["Python', "'pBrogEcims S ssses Un ! ']

>>> "555-867 5300 RIS e

['555 ", "86 7T s]

>>> "*x%xpyl hon P EoGEeNiNNsagRsesRnh A s s st rip (' * ')
'Python prograiing e et

BUILT-IN STRING METHODS

str.capitalize () - returns a copy of the string with the first character capitalized
and the rest lowercase.

str.center (width[, fillchar]) — centers the contents of the string str in field-size
width, padded by fillchar (defaults to a blank space). See also str.1just () and
Str rJusi=ieR

str.count (sub[, start[, end]]) - returnthe number of non-overlapping
occurrences of substring sub in the range [start, end]. Can use slice notation here.

str.endswith (suffix[, start[, end]])- returnTrue if the string str ends with
suffix, otherwise return False. Optionally, specify a substring to test. See also
str.startswith ().

BUILT-IN STRING METHODS

>>> "i LoVe pYtHON"CEapTET aiwe)

'I love python'

>>> "centered".center (20, '*"')
'******Centered******'

>>> "mlsslsEN DN

2

>>> "misslssSipris

1

>>> "mlssissTERE

FFalse

>>> "mlsslssippEaEs

True

. couneChIEE)
S C OTMNEG TRa i o i — 1)
.endswith("ssi")

NENESTHARERS S /s s %08)

BUILT-IN STRING METHODS

str.find(subl, start[, end]]) -return the lowestindex in the string where

substring sub is found, such that sub is contained in the slice str[start:end]. Return -1 if sub

is not found. See also str.rfind () .

str.index (sub[, start|[, end]]) -identical to find(),but raises a ValueError
exception when substring sub is not found. See also str.rindex () .

str.join (iterable) -return a string that is the result of concatenating all of the
elements of iterable. The str object here is the delimiter between the concatenated
elements.

str.replace(old, new[, count]) —return a copy of the string str where all
instances of the substring old are replaced by the string new (up to count number of
times).

BUILT-IN STRING METHODS

>>> "whenever".find("never")

E

>>> "whenever".find ("what")

-1

>>> "whenever".index ("what")

Traceback (mosti Leee i aEstisis sy
File “<stdin>7, Licss e i e

ValueError : subsSiEfisiiC e s e i)

>>> =" . Jjoin{ [" 555 TEETCUE TR
' 555580 St
>>> " " Jjoin ([T Py rhens s s Ol])

'"Python 1s awesome'
>>> "whenever".replace("ever", '"ce")
'whence'

THE STRING MODULE

» Additional built-in string methods may be found here.

» All of these built-in string methods are methods of any string object. They do not
require importing any module or anything — they are part of the core of the language.

* There is a string module, however, which provides some additional useful string tools.
It defines useful string constants, the string formatting class, and some deprecated
string functions which have mostly been converted to methods of string objects.

https://docs.python.org/2/library/stdtypes.html#string-methods

STRING CONSTANTS

>>> import string

>>> string.aseCi il e sy
'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVIWXYZ '
>>> string.ascrir e e e
'abcdefghijklmnopgrstuvwxyz'
>>> string.ascri UpEcuscrit
'"ABCDEFGHIJKLMNOPQRSTUVWXYZ '
>>> string.digits

'01 23456

>>> string.hexdigits
'0123456789%9abcdefABCDEE"

STRING CONSTANTS

>>> i1mport string

>>> string.lowercase #locale-dependent
'abcdefghijklmnopgrstuvwxyz'

>>> string.uppercase #locale-dependent
'ABCDEFGHIJKLMNOPQRSTUVWXY Z '

>>> string.letters # lowercasetuppercase
'abcdefghijklmnopgrstuvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ "
>>> string.oCedigEs

'O 12 3 SicNEy

>>> print string.punctuation

I"#SS& " () >+, = o = R N

STRING CONSTANTS

* string.whitespace - a string containing all characters that are considered
whitespace. On most systems this includes the characters space, tab, linefeed, return,
formfeed, and vertical tab.

* string.printable - string of characters which are considered printable.This is a
combination of digits, letters, punctuation, and whitespace.

STRING FORMATTING

» String formatting is accomplished via a built-in method of string objects. The

signature is:
str.format (*args, **kwargs)

* Note that the *args argument indicates that format accepts a variable number of
positional arguments, and **kwargs indicates that format accepts a variable number
of keyword arguments.

The string on which this method is called can contain literal text or replacement
fields delimited by braces {}. Each replacement field contains either the numeric
index of a positional argument, or the name of a keyword argument. A copy of the
string is returned where each replacement field is replaced with the string value of
the corresponding argument.

STRING FORMATTING

>>> "{0}, {1}, 125 TE AT SR e e s e)
'a, s

>>> {1}, {1},)Y eforis eneila e ic)
'a o e

>>> '{2}, {1}, POL R i a s e R)
Neltutie) 17

>>> '{2}, {1}, O RaE .)

VOt 0 e e

>>> '{0} {1} {0} TEONTNcrEsiEtE [N SRE i)
'abracadabra'

STRING FORMATTING

You can also use keyword arguments to the format function to specify the
value for replacement fields

>>> 'Coords: {lat}y "{ilie g asacnsiithasiii-s= s/ d N\t long="-115.81W")
'"Coords: 37.24N, F=slESatcuu

>>> coord = {'lat "5l 3N E SR N S R LT)

>>> 'Coords: {lat}, FHOnGEREC i -nuase =)

'Coords: 37 24N, SIS uomie

STRING FORMATTING

Within the replacement field, you are able to access attributes and
methods of the object passed as an argument to format. Here, we pass a

complex number as an argument, but we access its member attributes in
the replacement field.
>>> ¢ = 2+3]

>>> '{0} has real part {0O.real} and imaginary part {0O.imag}.'.format (c)
'(2+3]) has real partaZ S0 e ReRiiErCReiis e S gt !

>>> coor (355575
} i

ol =
>>> = M Y : {01 RS fometeEeuEd:)
' X A S e

STRING FORMATTING

* There are reserved sequences for specifying justification and alignment within a
replacement field.

>>> '{:<30}'.format('left aligned')
'left aligned '

>>> '{:>30}"'.format L R T BRI SR
g right aligned’

>>> '"{:730}"'.format ('centered')

X centered :

>>> '{:*230}" . fermatiSRce N eSS lscr S 1 39S 'a fi1ll char
'***********Centered***********'

STRING FORMATTING

* There are a number of options for formatting floating-point numbers.

>>> '"{:+f}; {+E} ' . Torms s mid St SN S oW Sign always

'+3.140000; =S s CIUE TN
>>> '{: f}; {: £1! Coria iRt S OW " Space for positive

' 3.140000% % S a0 SR
>>> '{:-f}; {:-f}'iLormeriCois FESFeR s T e Bhow only minus

'3.140000; % -8R a0 e
>>> '{:.3f}"'.format (3 EESOR SRR st O hree ‘dec places

N3 AAZE

STRING FORMATTING

» There are still quite a few more formatting specifiers that we haven’t covered. A list of
them is available here.

 We’ll now turn our attention back to functions and begin OOP in Python.

https://docs.python.org/2/library/string.html#formatspec

