LECTURE 6

Advanced Functions
and OOP

FUNCTIONS

Before we start, let’s talk about how name resolution is done in Python: When a function executes, a new
namespace is created (locals). New namespaces can also be created by modules, classes, and methods as
well.

LEGB Rule: How Python resolves names.
Local namespace.

Enclosing namespaces: check nonlocal names in the local scope of any enclosing functions from inner to
outer.

Global namespace: check names assigned at the top-level of a module file, or declared global in a def
within the file.

__builtins__:Names python assigned in the built-in module.

If all fails: NameError.

FUNCTIONS AS FIRST-CLASS OBJECTS

We noted a few lectures ago that functions are first-class objects in Python. What exactly
does this mean?

In short, it basically means that whatever you can do with a variable, you can do with a
function. These include:

Assigning a name to it.

Passing it as an argument to a function.
Returning it as the result of a function.
Storing it in data structures.

etc.

FUNCTION FACTORY

a.k.a. Closures.

As first-class objects, you can wrap
functions within functions.

Outer functions have free variables
that are bound to inner functions.

A closure is a function object that
remembers values in enclosing
scopes regardless of whether those
scopes are still present in memory.

def)
def (v) :
s closed in
P eRclcfinition of inc
return x + vy
return inc

srleSR=Nmake *1nc (D)
incl0 = make inc(10)

print(inc5(5)) # returns 10
print(incl0(5)) # returns 15

CLOSURE

* Closures are hard to define so follow these three rules for generating a closure:
1. We must have a nested function (function inside a function).
2. The nested function must refer to a value defined in the enclosing function.

3. The enclosing function must return the nested function.

DECORATORS

« Wrappers to existin def (name) :
Pp 3 return "Hello, " + str(name) + "!"
functions.
e You can extend the def (func) :
def (name) :

functionality of existing return "<p>" + func(name) + "</p>"

functions without return func wrapper

having to modify them.

fi e S RfeRs o deicorate (say hello)
print my say hello("John")
FEOUGpUE 18 . <p>Hello, John!</p>

DECORATORS

« Wrappers to existin def (name) :
Pp & returm "Hello, " + str(mame) + "!"
functions.
e You can extend the def (func) :
def (name) :

functionality of existing B R func(name) + "</py"

functions without return func wrapper

having to modify them.

my say hertre—= p decoratefsay hello)
print my say hello("John")

FEOUGpUE 18 . <p>Hello, John!</p>

Closure

DECORATORS

So what kinds of things can we use decorators for?
Timing the execution of an arbitrary function.
Memoization — cacheing results for specific arguments.
Logging purposes.

Debugging.

Any pre- or post- function processing.

DECORATORS

1 def (name) :
* Python allows us some nice
: : return "Hello, " + str(name) + "!"
syntactic sugar for creating
decorators. def (func) :
def (name) :

return "<p>" + func(name) + "</p>"
return func wrapper

fi e S RfeRs o deicorate (say hello)
////'print NS e an s he o (" gohn')

Notice here how we have to explicitly :
Output s el 1o, hn!</p>
decorate say_hello by passing it to # Output is: <p>Hello, John!</p

our decorator function.

DECORATORS

def Cranc).
* Python allows us some nice def (name) :
syntactic sugar for creating return "<p>" + func(name) + "</p>"
decorators. return func wrapper
@p decorate
/ def (name) :
Some nice syntax that return "Hello, " + str(name) + "!"
does the same thing,
except this time I can print say hello("John")
use OO D e | [0, John!</p>

say_hello instead of
assigning a new
name.

DECORATORS

* You can also stack decorators with the closest decorator to the function definition

being applied first.

€div decoreise
@p decerastse
@strong decorclise
def (name) :
return “Hello, ” + str(name) + “!”

print say hello("John")
Outputs <div><p-<stroriEsPEEsse TR s trong></p></div>

DECORATORS

* We can also pass arguments to decorators if we’d like.

def (tag name) :
def (Eunc)s
def (name) :
return "<"+tag name+">"+func(name)+"</"+tag name+">"
return func wrapper
return tags' degoEaToNs

@tagS (npn)
def (name) :
return "Helle, F i SrsueiENal o Vet eI

print say hello (! Johr"Sit U @isn st el N e He Ivloj John !</p>

DECORATORS

* We can also pass arguments to decorators if we’d like.

def (ta ey

(Eunc)s
(name) :
return "<"+tag name+">"+func(name)+"</"+tag name+"
n func wrapper
return tags' deceEcitoRs

Closure!

@tags("p")
def (name) :
return "Helle, F i SrsueiENal o Vet eI

print say hello("John")

DECORATORS

 We can also pass Its to decorators if we'd like.

(Eunc)s
(name) :
return "<"+tag name+">"+func(name)+"</"+tag name+"
n func wrapper
eturn tags decorator

SAECe L, More Closure!
def (name) :
return "Helle, F i SrsueiENal o Vet eI

print say hello("John")

ACCEPTS EXAMPLE

* Let’s say we wanted to create a general purpose decorator for the common

operation of checking validity of function argument types.

import math
def (z) :
return math.sqgrt(z.real**2 4+ z.imag**2)

>>> complex magnitude("hello")
Traceback (most recen ™ ecr Sl uscReniac

File "<stdin>"," 11nec S intssiie e

File "accepts test.pys 7 Eiess s isEeEate s ielon tirce

return math.sgrt(z . e el e S Sz el)

AttributeError: 'stre' Folic et ristmncNcammr s oniE— e a1t
>>> complex magnitude (1+23)
2. 2.36 016 S SN

ACCEPTS EXAMPLE

def (*arg typeus
def (fune)s
def (*args) :
for arg, arg CypeRin St fands, aTg-types) :
if typelarg)y h=r e B pess
Print S o ot s e S ROt Of type", arg type
break
else:
func (*args)
return new func
return ‘arg Elic el

Check out accepts_test.py!

OOP IN PYTHON

* Python is a multi-paradigm language and, as such, supports OOP as well as a variety
of other paradigms.

 If you are familiar with OOP in C++, for example, it should be very easy for you to
pick up the ideas behind Python’s class structures.

CLASS DEFINITION

* Classes are defined using the class keyword with a very familiar structure:

ClassName (object) :
<statement-1>

<statement-N>

* There is no notion of a header file to include so we don’t need to break up the
creation of a class into declaration and definition. We just declare and use it!

CLASS OBJECTS

* Let’s say I have a simple class which does not much of anything at all.

MyClass (object) :
"UNNA simpletiexanmplemcikersaEslde st rng” "
1 = 12345
(self):
'hello world'

* I can create a new instance of MyClass using the familiar function notation.

x = MyClass()

CLASS OBJECTS

>>> x = MyClass()
S X
» I can access the attributes and ik VRS

methods of my object in the following way: >>> x.f ()
A o world'

* We can define the special method init () which is automatically invoked for

new instances (initializer).

class MyClass (object):
"""A simple example class"""
1~ =15234S
def (self) :
print "I just created a MyClass object!"
def f(self):
return 'hello world'

CLASS OBJECTS

* Now, when I instantiate a MyClass object, the following happens:

>>> y = MyClass|()
I jJust created a MyClass object!

* We can also pass argumentstoour init function:

>>> class Complex (object) :

def (self, realpart, imagpart):
self.r = realpart
self.1 = 1magpart

>>> x = Complex (3.0, -4.5)
>N X Lt
(37 0F SRSy

DATA ATTRIBUTES

» Like local variables in Python, there is no need for a data attribute to be declared
before use.

>>> class Complex(object) :

def (self, realpart, imagpart):
self e = rceplinERn
self.1 = imagpart

>>> x = Comples SRl asaio
P> > B el o

(3.0 54%as

>>> X.Ir sJualred =Sttt
>>> X.r Sueired

Sl

DATA ATTRIBUTES

 We can add, modify, or delete attributes at will.

x.year = 2016 # Add an ‘year' attribute.
x.year = 2017 # Modify ‘yvear' attribute.
del x.year # Delete ‘year' attribute.

* There are also some built-in functions we can use to accomplish the same tasks.

hasattr(x, 'year') # Returns true if year attribute exists
getattr(x, 'year') # Returns value of year attribute
setattr(x, 'year' 20 EaceTWEsEEE Eote - year to 2015

delattr(x, 'year') # Delete attribute year

VARIABLES WITHIN CLASSES

>>> class Dog(object):

* Generally speaking, -, e Bifads=lcanine' # class var
variables in a class fall : def (self, name):
under one of two Categorles: Self . Nldame = name # iﬂstaﬂce var

>>> d = Dog('Fido')

* Classvariables, whichare — ___ _ _ Dog ('Buddy")

Share o >>> d.kind # shared by all dogs
 Instance variables, which et e
are unique to a specific >>> e.kind # shared by all dogs
instance. 'canine'
>>> d.name # unique to d
YErdod

>>> e.name # unique to e
1= [Kok v

VARIABLES WITHIN CLASSES

 Be careful when using mutable>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

objects as class variables.

e Sl dc v Syak i

class Dog(object):

tricks = [] # mutable class variable
def (self, name):

self.name = name
def gt onetrick) :

self.tricks.append(trick)
= Dog('Fido')
= Dog('Buddy')
SeeldmErRsk @ rol - over')
EclsldW mE cka(play ‘dead’')
d.tricks # unexpectedly shared by all
'play dead']

(D Q. DR

VARIABLES WITHIN CLASSES

* To fix this issue, make it an
instance variable instead.

>>> class Dog(object):

>>> def (self, name):
>>> self.name = name

>>> self.tricks = []

>>> def WS “trick) :
>>> self.tricks.append(trick)
>>> d = Dog('Fido')

>>> e = Dog('Buddy')

e e el B fek(Lroll over')

S s i TeRe (Y Dl ay dead ')

>>> d.tricks

Bl KOAAZ il

>>> e.tricks

['play dead']

BUILT-IN ATTRIBUTES

Besides the class and instance attributes, every class has access to the following:

__dict :dictionary containing the object’s namespace.

doc : class documentation string or None if undefined.

name : class name.

module : module name in which the class is defined. This attribute is

" main_ " in interactive mode.

__bases :apossibly empty tuple containing the base classes, in the order of their
occurrence in the base class list.

METHODS

 We can call a method of a class object using the familiar function call notation.

>>> x = MyClass()
>>> x.f ()
'hello world!
* Perhaps you noticed, however, that the definition of MyClass.f() involves an argument

called self.

class MyClass (object):
""MA simple example class"""
1 = 12345
3 def (self) :
to Calhng MYCIaSS-f(X)- print "I just created a MyClass object!"™

def f (self):
return 'hello world'

Calling x.f() is equivalent

FRACTION EXAMPLE

* Check out Bob Myers’ simple fraction class here.

* Let’s check out an equivalent simple class in Python (frac.py).

http://www.cs.fsu.edu/~myers/c++/examples/frac/frac.cpp

>>>
>>>
>>>
>>>
>>>
>>>

>>>

FRACTION EXAMPLE

import frac

i [
1572
2 b
£3s
=2

iE2

= fracJhEEacelen i’
= frac.Fraction (3, 5)

.get numerator ()
.get denominator ()
.get numerator ()

Bef=yEnle [Share (iLLgLELE O i ()

FRACTION EXAMPLE

>>> f2.evaluate ()
02§46

>>> fl.set valueasng)
>>> fl.evaluate ()
0.28577142887 $d8sa 50
>>> f1.show()

24/ %7

>>> f2.show ()

Y 5

>>> f72L T neeit)

AT &

>>> f2.show()

N

PET EXAMPLE

* Here is a simple class that defines a Pet object.

class Pet(object) :

def

def

def

def

(self, name, age):
self.name = name
self.age = age The _ str _ built-in function
(self): defines what happens when I
return self.name print an instance of Pet. Here
(self): I'm
return self.ag e/ overriding it to print the
st=LlE)2 name.

return "This pet’s name i1is " 4+ str(self.name)

PET EXAMPLE

* Here is a simple class that defines a Pet object.

class Pet(object):

def (self, name, age):
self.name = name
self.age = age

def (self):
return self.name

def (self):
return self.age

def (self):

>>> from pet import Pet
>>> mypet = Pet('Ben', '2"')
>>> print mypet

This pet's name is Ben

>>> mypet.get name ()

'Ben'

>>> mypet.get age()

2

return "This pet’s name is " + str(self.name)

INHERITANCE

* Now, let’s say I want to create a Dog class which inherits from Pet. The basic format
of a derived class is as follows:

DerivedClassName (BaseClassName) :
<statement-1>

<statement-N>

In the case of BaseClass being defined elsewhere, you can use
module name BeiseClEarsiclN RN

INHERITANCE

* Here is an example definition of a Dog class which inherits from Pet.

Dog (Pet) :

* The pass statement is only included here for syntax reasons. This class definition for
Dog essentially makes Dog an alias for Pet.

INHERITANCE

 We’ve inherited all the functionality of our Pet class, now let’s make the Dog class
more interesting.

>>> from dog import Dog class Dog(Pet):
>>> mydog = Dog('Ben', 2) pass

>>> print mydog

This pet's name 1s Ben

>>> mydog.get name ()

'Ben'

>>> mydog.get age()

2

INHERITANCE

* For my Dog class, [want all of the functionality of the Pet class with one extra
attribute: breed. I also want some extra methods for accessing this attribute.

Dog (Pet) :

(self, name, age, breed):
Pet. ini G GfSElNEra-iilEstaricier)
self.breed = breed

(self):
self.breed

INHERITANCE

* For my Dog class, [want all of the functionality of the Pet class with one extra
attribute: breed. I also want some extra methods for accessing this attribute.

Dog (Pet) : O e lioaticn Functi
verriding initialization functio:
(self e ae omeael) :
Pet. ini G GfSElNEra-iilEstaricier)
self.breed = breed
(self):
self.breed

Python resolves attribute and method references
by first

searching the derived class and then searching
the base class.

INHERITANCE

* For my Dog class, [want all of the functionality of the Pet class with one extra
attribute: breed. I also want some extra methods for accessing this attribute.

Dog (Pet) :
(self, name, age, breed):
Pet. ini G GfSElNEra-iilEstaricier)
sel i brecelE a6 e = name
(self): self.age = age
self.breed

We can call base class methods directly using
BaseClassName.method(self, arguments). Note that we do this here

to extend the functionality of Pet’s initialization method.

INHERITANCE

>>> from dog import Dog

>>> mydog = Dog('Ben', 2, 'Maltese')
>>> print mydog

This pet's name 1s Ben

>>> mydog.get age()

2
?;Zliziz?.get_breed() class Dog (Pet) :
def (self, name, age, breed):
EeEs TR ('S el i, ‘name, age)
self.breed = breed
def (self):

return self.breed

INHERITANCE

* Python has two notable built-in
functions:

* 1sinstance (obj, cls) returns true
if obj is an instance of cls (or some class

derived from cls).

* issubclass(class, classinfo)
returns true if class is a subclass of

classinfo.

>>> from pet import Pet
>>> from dog import Dog

>>> mydog = Dog('Ben', 2, 'Maltese')

>>> isinstance (mydog, Doqg)
True

>>> isinstance (mydog, Pet)
True

>>> issubclass (Dog, Pet)
True

>>> issubclass (Pet, Dog)

False

MULTIPLE INHERITANCE

* You can derive a class from multiple base classes like this:

DerivedClassName (Basel, Base?2, Base3):
<statement-1>

<statement-N>

» Attribute resolution is performed by searching DerivedClassName, then Basel, then
Base?2, etc.

PRIVATE VARIABLES

There is no strict notion of a private attribute in Python.

However, if an attribute is prefixed with a single underscore (e.g. name), then it should
be treated as private. Basically, using it should be considered bad form as it is an
implementation detail.

To avoid complications that arise from overriding attributes, Python does perform name
mangling. Any attribute prefixed with two underscores (e.g. name) and no more than
one trailing underscore is automatically replaced with classname name.

Bottom line: if you want others developers to treat it as private, use the appropriate prefix.

NAME MANGLING

class Mapping:
def (self, iterable):
self.l1tems® BN e
self.update(iterable)
def (self, iterable):
for item in iterable:
self .itemss LEsEs appenek(e o)

class MappingSubclass (Mapping) :
def (self, keys, values):
for item in zip(keys, values):
self. itemstilsisicPaiepeicis Rl

What’s the problem here?

NAME MANGLING

Mapping:

(self, iterable):
self.litemsFlus e
self.update(iterable)

(self, iterable):
item iterable:
sel f. rtems 1S Bile P Sty il e i)

MappingSubclass (Mapping) :
(self, keys, values):
item zip (keys, wvalues):
self.itemsTliSE . dPEEmck {SRSeHn)

What’s the problem here?

The update method of Mapping accepts
one iterable object as an argument.

The update method of MappingSubclass,
however, accepts keys and values as
arguments.

Because MappingSubclass is derived

from Mapping and we haven’t overrided
the init method, we will have an

error when the __init method calls update
with a single argument.

NAME MANGLING

class Mapping:
def (self, iterable):
self.l1tems® BN e
self.update(iterable)
(self, iterable):
for item in iterable:

self .itemss LEsEs appenek(e o)

def

class MappingSubclass (Mapping) :

To be clearer, because MappingSubclass inherits
from Mapping but does not provide a definition
for _init_ , we implicitly have the following
__init method.

def (self, iterable):

def (self, keys, values):
for item in zip(keys, values):
self. itemstilsisicPaiepeicis Rl

e Becriisi 1 ist = []
self.update(iterable)

\ 4
A

NAME MANGLING

This __ init. method references an update
method. Python will simply look for the most

class Mapping:
PB=gY local definition of update here.

def (self, iterable):
self.l1tems® BN e
self.update(iterable)
def (self, iterable):
for item in iterable:
self .itemss LEsEs appenek(e o)

def (self, iterable):
class MappingSubclass (Mapping) : s tems list—

def (self, ke vsusvERiucistis self.update (iterable)
for item in zip(keys, values):
self. itemstilsisicPaiepeicis Rl

\ 4
A

NAME MANGLING

The signatures of the update call and the update

A definition do not match. The _ init method
class Mapping:

def (self, iterable) :]colepends oln ;lcell;;am 1;anemenot1at1oE off upéiéte
self.items list = [] R e tabe. Namely, the update delined in
= Mapping.

self.update(iterable)
def (self, iterable):
for item in iterable:
self .itemss LEsEs appenek(e o)

def (self, iterable):

class MappingSubclass (Mapping) :

def (self, keys, values):
for item in zip(keys, values):

self. itemstilsisicPaiepeicis Rl

ELEETISRI ST =
self.update(iterable)

\ 4
A

NAME MANGLING

>>> import map
>>> x = map.MappingSubclass([1l, 2, 3])
Traceback (most recent call last):
File "<stdin>"," ne S8 s sl e
File "map.py", <0 nc S i
self.update(iterable)
TypeError: update () takes exactly 3 arguments (2 given)

NAME MANGLING

class Mapping:
def (self, iterable):
self.items TS =y
self. update(EtcaaEscy
def (self, iterable):
for item in iterable:
self.items 1istlaPpe RS casSH)
__update = update #FépriiatessOBENEe OB Csna Wi ndate () method

class MappingSubclass (Mapping) :
def (self, keys, wvalues):
provides new signature for update ()
but does not break init ()
for item in zip(keys, wvalues):
self.]1temsEllSwarciieRmuc)

NAME MANGLING

>>> import map

>>> x = map.MappingSubclass([1,2,3])

>>> X.ltemsHlsrcis

[1, AN

>>> x.update ([Tkeyk & S et bt et - W a1 2 '])
>>> X.ltemsyiErse

[1, 2, 3, (!keyil s WreiNisHesaSaslien i ame e atl !)]

STRUCTS IN PYTHON

* You can create a struct-like object by using an empty class.

>>> class Struct:
pass

>>> node = Struct ()
>>> node.label = 4

>>> node.data = "My s daiEamEciE SranEe
>>> node.next = Struct ()
>>> next node = node.next

>>> next node.apciE=i
>>> print node.next.label

EMULATING METHODS

* You can create custom classes that emulate methods that have significant meaning
when combined with other Python objects.

 The statement print >> typically prints to the file-like object that follows.
Specifically, the file-like object needs a write() method. This means I can make any

class which, as long as it has a write() method, is a valid argument for this print
statement.

>>> Random:
(‘S el Ry SRS S
A N e IS P T s 0 "+ sTr(str 1in)
>>> someob] = Random()
>>> >> someobj, "whatever"

The string to write 1s: whatever

CUSTOM EXCEPTIONS

« We mentioned in previous lectures that exceptions can also be custom-made. This is

done by creating a class which is derived from the Exception base class.

>>> from myexcept import MyException
>>> try:

class MyException (Exception):

def (self, wvalue):
self . parameter = value
def (self):

return self.parameter

ralise MyExceptlom(Myl CoOmMPerror-necssage. ")

except MyException as e:
print "Error: S Eeienaie)

Error: My clusSiEomchiae = St-i-teick

ITERABLES, ITERATORS, AND
GENERATORS

Before we move on to the standard library (in particular, the itertools module), let’s
make sure we understand iterables, iterators, and generators.

An iterable is any Python object with the following properties:
It can be looped over (e.q. lists, strings, files, etc).
Can be used as an argument to i ter (), which returns an iterator.

Must define @ iter () (or getitem ()).

ITERABLES, ITERATORS, AND
GENERATORS

Before we move on to the standard library (in particular, the itertools module), let’s
make sure we understand iterables, iterators, and generators.

An iterator is a Python object with the following properties:

Must define iter () to return itself.

Must define the next () method to return the next value every time it is invoked.

Must track the “position” over the container of which it is an iterator.

ITERABLES, ITERATORS, AND
GENERATORS

* A common iterable is the list. Lists, however, are not iterators. They are simply Python
objects for which iterators may be created.

>>> a = [1,; 5 2 s

>>> # a list is iterabless Seaiaenaesm S icen —~ method

>>> a. e

<method-wrapper ' "G el SNt gy St acie 00145 5D7 8>

>>> # a list doesn’t have the next method, so it's not an iterator
>>2 d L LICESE

AttributeError: " ITst NN oSNt RIOREAs S Ol Tee . nex !

>>> # a 1list is not its own iterator

>>> iter(a) is a

False

ITERABLES, ITERATORS, AND
GENERATORS

* The listiterator object is the iterator object associated with a list. The iterator version
of a listiterator object is itself, since it is already an iterator.

>>> # iterator for alilBst: et iEEMe o Sititerator' object
>>> ia = iter (a)

>>> 1a

<llistiterator object at 0x014DF2F0>

>>> # a listiterator object is its own iterator

>>> iter(ia) is 1ia

True

ITERATORS

° 1 1 ’P
How does this magic work? for item in [1, 2, 3, 4]:

print item

* How does this magic work?

* The for statement calls the
iter() function on the
sequence object. The iter()
call will return an iterator
object (as long as the
argument has a built-in
__iter _ function) which
defines next() for accessing
the elements one at a time.

* Let’s do it manually:

ITERATORS

SSSUTRN SRR F PR 08 3 4]

>>> 1t
>>> 1t

= iter(mylist)

<listiterator object at 0x2af6addlo6090>

>>> 1t
i)
>>> 1t
2
>>>.
£;
>>> 1t
=
S 14

.next ()
.next ()

.next ()

.next ()

.next () # Raises Stoplteration Exception

ITERABLES, ITERATORS, AND
GENERATORS

>>> mylist = [1, 2, 3, A oo 0= [, 2, 3, 41

>>> for item in mylist: SRS) 1 = mylist. iter ()
print item >>> print 1i.next ()
1
>>> print i.next ()

2

I‘ >>> print i.next ()
Is equivalent tomsss) |3

>>> print 1i.next ()

4

>>> print i.next ()

Stoplteration Exception Raised

ITERATORS

* Let’s create a custom iterable object.

class Even:

def

def

def

(self, data):
self.data = data

self.index = 0
(self):
return self
(self):

1f self.index >= len(self.data):
raise Stoplteration

ret = self.data[self.index]

selT Frndese =t tSICE IR niCHe <" o2

return ret

ITERATORS

* Let’s create a custom iterable object.

>> from even import Even
>>> evenlist = Even(range(0,10))
>>> jter(evenlist)
<even.Even 1nstance at 0x2ad24d84al28>
>>> for item in evenlist:
print 1tem

OO+ Oy S~ N N e

ITERABLES, ITERATORS, AND
GENERATORS

* Generators are a way of defining iterators using a simple function notation.

Generators use the yield statement to return results when they are ready, but Python
will remember the context of the generator when this happens.

Even though generators are not technically iterator objects, they can be used
wherever iterators are used.

* Generators are desirable because they are lazy: they do no work until the first value
is requested, and they only do enough work to produce that value. As a result, they
use fewer resources, and are usable on more kinds of iterables.

GENERATORS

* An easy way to create “iterators”. Use the yield statement whenever data is
returned. The generator will pick up where it left off when next() is called.
def (data) :

for 1 in range(0, len(data), 2):
yield data[i]

>>> for elem in even(range(0,10)):
print elem

QO AONSNE= NS G .

ITERABLES, ITERATORS, AND
GENERATORS

def () : >>> counter = count generator()
N+ ‘=3 >>> counter
while True: SEEEE eSO DS S e count generator at 0Ox..>
yield n >>> next (counter)
n=n+1 0
>>> next (counter)
¥

>>> iter (counter)

SRR SERe C T SeeonTIT generator at Ox..>
>>> iter (counter) is counter

True

>>> type (counter)

<type 'generator'>

ITERABLES, ITERATORS, AND
GENERATORS

» There are also generator comprehensions, which are very similar to list

comprehensions.
>>> 11 = [x%k%Z X range (10)] # 1list
>>> gl = (x**2 X range (10)) # gen
Equivalent to:
(exp) :
X exp:
x**?

gl gen(iter (range (10)))

