
LECTURE 6
Advanced Functions

and OOP

FUNCTIONS

• Before we start, let’s talk about how name resolution is done in Python: When a function executes, a new
namespace is created (locals). New namespaces can also be created by modules, classes, and methods as

well.

• LEGB Rule: How Python resolves names.

• Local namespace.

• Enclosing namespaces: check nonlocal names in the local scope of any enclosing functions from inner to

outer.

• Global namespace: check names assigned at the top-level of a module file, or declared global in a def

within the file.

• __builtins__: Names python assigned in the built-in module.

• If all fails: NameError.

FUNCTIONS AS FIRST-CLASS OBJECTS

• We noted a few lectures ago that functions are first-class objects in Python. What exactly

does this mean?

• In short, it basically means that whatever you can do with a variable, you can do with a

function. These include:

• Assigning a name to it.

• Passing it as an argument to a function.

• Returning it as the result of a function.

• Storing it in data structures.

• etc.

FUNCTION FACTORY

• a.k.a. Closures.

• As first-class objects, you can wrap

functions within functions.

• Outer functions have free variables

that are bound to inner functions.

• A closure is a function object that

remembers values in enclosing

scopes regardless of whether those

scopes are still present in memory.

def make_inc(x):

 def inc(y):

 # x is closed in

 # the definition of inc

 return x + y

 return inc

inc5 = make_inc(5)

inc10 = make_inc(10)

print(inc5(5)) # returns 10

print(inc10(5)) # returns 15

CLOSURE

• Closures are hard to define so follow these three rules for generating a closure:

1. We must have a nested function (function inside a function).

2. The nested function must refer to a value defined in the enclosing function.

3. The enclosing function must return the nested function.

DECORATORS

• Wrappers to existing

functions.

• You can extend the

functionality of existing

functions without

having to modify them.

def say_hello(name):

 return "Hello, " + str(name) + "!"

def p_decorate(func):

 def func_wrapper(name):

 return "<p>" + func(name) + "</p>"

 return func_wrapper

my_say_hello = p_decorate(say_hello)

print my_say_hello("John")

Output is: <p>Hello, John!</p>

DECORATORS

• Wrappers to existing

functions.

• You can extend the

functionality of existing

functions without

having to modify them.

def say_hello(name):

 return "Hello, " + str(name) + "!"

def p_decorate(func):

 def func_wrapper(name):

 return "<p>" + func(name) + "</p>"

 return func_wrapper

my_say_hello = p_decorate(say_hello)

print my_say_hello("John")

Output is: <p>Hello, John!</p>
Closure

DECORATORS

• So what kinds of things can we use decorators for?

• Timing the execution of an arbitrary function.

• Memoization – cacheing results for specific arguments.

• Logging purposes.

• Debugging.

• Any pre- or post- function processing.

DECORATORS

• Python allows us some nice

syntactic sugar for creating

decorators.

Notice here how we have to explicitly

decorate say_hello by passing it to

our decorator function.

def say_hello(name):

 return "Hello, " + str(name) + "!"

def p_decorate(func):

 def func_wrapper(name):

 return "<p>" + func(name) + "</p>"

 return func_wrapper

my_say_hello = p_decorate(say_hello)

print my_say_hello("John")

Output is: <p>Hello, John!</p>

DECORATORS

• Python allows us some nice

syntactic sugar for creating

decorators.

Some nice syntax that

does the same thing,

except this time I can

use

say_hello instead of

assigning a new

name.

def p_decorate(func):

 def func_wrapper(name):

 return "<p>" + func(name) + "</p>"

 return func_wrapper

@p_decorate

def say_hello(name):

 return "Hello, " + str(name) + "!"

print say_hello("John")

Output is: <p>Hello, John!</p>

DECORATORS

• You can also stack decorators with the closest decorator to the function definition

being applied first.

@div_decorate

@p_decorate

@strong_decorate

def say_hello(name):

 return “Hello, ” + str(name) + “!”

print say_hello("John")

Outputs <div><p>Hello, John!</p></div>

DECORATORS

• We can also pass arguments to decorators if we’d like.

def tags(tag_name):

 def tags_decorator(func):

 def func_wrapper(name):

 return "<"+tag_name+">"+func(name)+"</"+tag_name+">"

 return func_wrapper

 return tags_decorator

@tags("p")

def say_hello(name):

 return "Hello, " + str(name) + "!"

print say_hello("John") # Output is: <p>Hello, John!</p>

DECORATORS

• We can also pass arguments to decorators if we’d like.

def tags(tag_name):

 def tags_decorator(func):

 def func_wrapper(name):

 return "<"+tag_name+">"+func(name)+"</"+tag_name+">"

 return func_wrapper

 return tags_decorator

@tags("p")

def say_hello(name):

 return "Hello, " + str(name) + "!"

print say_hello("John")

Closure!

DECORATORS

• We can also pass arguments to decorators if we’d like.

def tags(tag_name):

 def tags_decorator(func):

 def func_wrapper(name):

 return "<"+tag_name+">"+func(name)+"</"+tag_name+">"

 return func_wrapper

 return tags_decorator

@tags("p")

def say_hello(name):

 return "Hello, " + str(name) + "!"

print say_hello("John")

More Closure!

ACCEPTS EXAMPLE

• Let’s say we wanted to create a general purpose decorator for the common
operation of checking validity of function argument types.

•

>>> complex_magnitude("hello")

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "accepts_test.py", line 4, in complex_magnitude

 return math.sqrt(z.real**2 + z.imag**2)

AttributeError: 'str' object has no attribute 'real'

>>> complex_magnitude(1+2j)

2.23606797749979

import math

def complex_magnitude(z):

 return math.sqrt(z.real**2 + z.imag**2)

ACCEPTS EXAMPLE

def accepts(*arg_types):

 def arg_check(func):

 def new_func(*args):

 for arg, arg_type in zip(args,arg_types):

 if type(arg) != arg_type:

 print "Argument", arg, "is not of type", arg_type

 break

 else:

 func(*args)

 return new_func

 return arg_check

Check out accepts_test.py!

OOP IN PYTHON

• Python is a multi-paradigm language and, as such, supports OOP as well as a variety

of other paradigms.

• If you are familiar with OOP in C++, for example, it should be very easy for you to

pick up the ideas behind Python’s class structures.

CLASS DEFINITION

• Classes are defined using the class keyword with a very familiar structure:

• There is no notion of a header file to include so we don’t need to break up the
creation of a class into declaration and definition. We just declare and use it!

class ClassName(object):

 <statement-1>

 . . .

 <statement-N>

CLASS OBJECTS

• Let’s say I have a simple class which does not much of anything at all.

• I can create a new instance of MyClass using the familiar function notation.

class MyClass(object):

 """"A simple example class docstring"""

 i = 12345

 def f(self):

 return 'hello world'

x = MyClass()

CLASS OBJECTS

• I can access the attributes and

methods of my object in the following way:

• We can define the special method __init__() which is automatically invoked for

new instances (initializer).

>>> x = MyClass()

>>> x.i

12345

>>> x.f()

'hello world'

class MyClass(object):

 """A simple example class"""

 i = 12345

 def __init__(self):

 print "I just created a MyClass object!"

 def f(self):

 return 'hello world'

CLASS OBJECTS

• Now, when I instantiate a MyClass object, the following happens:

• We can also pass arguments to our __init__ function:

>>> y = MyClass()

I just created a MyClass object!

>>> class Complex(object):

... def __init__(self, realpart, imagpart):

... self.r = realpart

... self.i = imagpart

>>> x = Complex(3.0, -4.5)

>>> x.r, x.i

(3.0, -4.5)

DATA ATTRIBUTES

• Like local variables in Python, there is no need for a data attribute to be declared

before use.

>>> class Complex(object):

... def __init__(self, realpart, imagpart):

... self.r = realpart

... self.i = imagpart

>>> x = Complex(3.0, -4.5)

>>> x.r, x.i

(3.0, -4.5)

>>> x.r_squared = x.r**2

>>> x.r_squared

9.0

DATA ATTRIBUTES

• We can add, modify, or delete attributes at will.

• There are also some built-in functions we can use to accomplish the same tasks.

x.year = 2016 # Add an ‘year' attribute.
x.year = 2017 # Modify ‘year' attribute.
del x.year # Delete ‘year' attribute.

hasattr(x, 'year') # Returns true if year attribute exists

getattr(x, 'year') # Returns value of year attribute

setattr(x, 'year', 2017) # Set attribute year to 2015

delattr(x, 'year') # Delete attribute year

VARIABLES WITHIN CLASSES

• Generally speaking,

variables in a class fall

under one of two categories:

• Class variables, which are

shared by all instances.

• Instance variables, which

are unique to a specific

instance.

>>> class Dog(object):

... kind = 'canine' # class var

... def __init__(self, name):

... self.name = name # instance var

>>> d = Dog('Fido')

>>> e = Dog('Buddy')

>>> d.kind # shared by all dogs

'canine'

>>> e.kind # shared by all dogs

'canine'

>>> d.name # unique to d

'Fido'

>>> e.name # unique to e

'Buddy'

VARIABLES WITHIN CLASSES

• Be careful when using mutable

objects as class variables.

>>> class Dog(object):

>>> tricks = [] # mutable class variable

>>> def __init__(self, name):

>>> self.name = name

>>> def add_trick(self, trick):

>>> self.tricks.append(trick)

>>> d = Dog('Fido')

>>> e = Dog('Buddy')

>>> d.add_trick('roll over')

>>> e.add_trick('play dead')

>>> d.tricks # unexpectedly shared by all

['roll over', 'play dead']

VARIABLES WITHIN CLASSES

• To fix this issue, make it an

instance variable instead.

>>> class Dog(object):

>>> def __init__(self, name):

>>> self.name = name

>>> self.tricks = []

>>> def add_trick(self, trick):

>>> self.tricks.append(trick)

>>> d = Dog('Fido')

>>> e = Dog('Buddy')

>>> d.add_trick('roll over')

>>> e.add_trick('play dead')

>>> d.tricks

['roll over']

>>> e.tricks

['play dead']

BUILT-IN ATTRIBUTES

Besides the class and instance attributes, every class has access to the following:

• __dict__: dictionary containing the object’s namespace.

• __doc__: class documentation string or None if undefined.

• __name__: class name.

• __module__: module name in which the class is defined. This attribute is

"__main__" in interactive mode.

• __bases__: a possibly empty tuple containing the base classes, in the order of their

occurrence in the base class list.

METHODS

• We can call a method of a class object using the familiar function call notation.

• Perhaps you noticed, however, that the definition of MyClass.f() involves an argument

called self.

Calling x.f() is equivalent

to calling MyClass.f(x).

>>> x = MyClass()

>>> x.f()

'hello world'

class MyClass(object):

 """A simple example class"""

 i = 12345

 def __init__(self):

 print "I just created a MyClass object!"

 def f(self):

 return 'hello world'

FRACTION EXAMPLE

• Check out Bob Myers’ simple fraction class here.

• Let’s check out an equivalent simple class in Python (frac.py).

http://www.cs.fsu.edu/~myers/c++/examples/frac/frac.cpp

FRACTION EXAMPLE

>>> import frac

>>> f1 = frac.Fraction()

>>> f2 = frac.Fraction(3,5)

>>> f1.get_numerator()

0

>>> f1.get_denominator()

1

>>> f2.get_numerator()

3

>>> f2.get_denominator()

5

FRACTION EXAMPLE

>>> f2.evaluate()

0.6

>>> f1.set_value(2,7)

>>> f1.evaluate()

0.2857142857142857

>>> f1.show()

2/7

>>> f2.show()

3/5

>>> f2.input()

2/3

>>> f2.show()

2/3

PET EXAMPLE

• Here is a simple class that defines a Pet object.

class Pet(object):

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def get_name(self):

 return self.name

 def get_age(self):

 return self.age

 def __str__(self):

 return "This pet’s name is " + str(self.name)

The __str__ built-in function

defines what happens when I

print an instance of Pet. Here

I’m
overriding it to print the

name.

PET EXAMPLE

• Here is a simple class that defines a Pet object.

class Pet(object):

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def get_name(self):

 return self.name

 def get_age(self):

 return self.age

 def __str__(self):

 return "This pet’s name is " + str(self.name)

>>> from pet import Pet

>>> mypet = Pet('Ben', '2')

>>> print mypet

This pet's name is Ben

>>> mypet.get_name()

'Ben'

>>> mypet.get_age()

2

INHERITANCE

• Now, let’s say I want to create a Dog class which inherits from Pet. The basic format

of a derived class is as follows:

class DerivedClassName(BaseClassName):

 <statement-1>

 ...

 <statement-N>

In the case of BaseClass being defined elsewhere, you can use

module_name.BaseClassName.

INHERITANCE

• Here is an example definition of a Dog class which inherits from Pet.

• The pass statement is only included here for syntax reasons. This class definition for

Dog essentially makes Dog an alias for Pet.

class Dog(Pet):

 pass

INHERITANCE

• We’ve inherited all the functionality of our Pet class, now let’s make the Dog class
more interesting.

>>> from dog import Dog

>>> mydog = Dog('Ben', 2)

>>> print mydog

This pet's name is Ben

>>> mydog.get_name()

'Ben'

>>> mydog.get_age()

2

class Dog(Pet):

 pass

INHERITANCE

• For my Dog class, I want all of the functionality of the Pet class with one extra

attribute: breed. I also want some extra methods for accessing this attribute.

class Dog(Pet):

 def __init__(self, name, age, breed):

 Pet.__init__(self, name, age)

 self.breed = breed

 def get_breed(self):

 return self.breed

INHERITANCE

• For my Dog class, I want all of the functionality of the Pet class with one extra

attribute: breed. I also want some extra methods for accessing this attribute.

class Dog(Pet):

 def __init__(self, name, age, breed):

 Pet.__init__(self, name, age)

 self.breed = breed

 def get_breed(self):

 return self.breed

Python resolves attribute and method references

by first

searching the derived class and then searching

the base class.

Overriding initialization function

INHERITANCE

• For my Dog class, I want all of the functionality of the Pet class with one extra

attribute: breed. I also want some extra methods for accessing this attribute.

class Dog(Pet):

 def __init__(self, name, age, breed):

 Pet.__init__(self, name, age)

 self.breed = breed

 def get_breed(self):

 return self.breed

We can call base class methods directly using
BaseClassName.method(self, arguments). Note that we do this here

to extend the functionality of Pet’s initialization method.

self.name = name

self.age = age

INHERITANCE

>>> from dog import Dog

>>> mydog = Dog('Ben', 2, 'Maltese')

>>> print mydog

This pet's name is Ben

>>> mydog.get_age()

2

>>> mydog.get_breed()

'Maltese'
class Dog(Pet):

 def __init__(self, name, age, breed):

 Pet.__init__(self, name, age)

 self.breed = breed

 def get_breed(self):

 return self.breed

INHERITANCE

• Python has two notable built-in

functions:

• isinstance(obj, cls) returns true

if obj is an instance of cls (or some class

derived from cls).

• issubclass(class, classinfo)
returns true if class is a subclass of

classinfo.

>>> from pet import Pet

>>> from dog import Dog

>>> mydog = Dog('Ben', 2, 'Maltese')

>>> isinstance(mydog, Dog)

True

>>> isinstance(mydog, Pet)

True

>>> issubclass(Dog, Pet)

True

>>> issubclass(Pet, Dog)

False

MULTIPLE INHERITANCE

• You can derive a class from multiple base classes like this:

• Attribute resolution is performed by searching DerivedClassName, then Base1, then

Base2, etc.

class DerivedClassName(Base1, Base2, Base3):

 <statement-1>

 ...

 <statement-N>

PRIVATE VARIABLES

• There is no strict notion of a private attribute in Python.

• However, if an attribute is prefixed with a single underscore (e.g. _name), then it should

be treated as private. Basically, using it should be considered bad form as it is an

implementation detail.

• To avoid complications that arise from overriding attributes, Python does perform name

mangling. Any attribute prefixed with two underscores (e.g. __name) and no more than

one trailing underscore is automatically replaced with _classname__name.

• Bottom line: if you want others developers to treat it as private, use the appropriate prefix.

NAME MANGLING

class Mapping:

 def __init__(self, iterable):

 self.items_list = []

 self.update(iterable)

 def update(self, iterable):

 for item in iterable:

 self.items_list.append(item)

class MappingSubclass(Mapping):

 def update(self, keys, values):

 for item in zip(keys, values):

 self.items_list.append(item)

What’s the problem here?

NAME MANGLING

class Mapping:

 def __init__(self, iterable):

 self.items_list = []

 self.update(iterable)

 def update(self, iterable):

 for item in iterable:

 self.items_list.append(item)

class MappingSubclass(Mapping):

 def update(self, keys, values):

 for item in zip(keys, values):

 self.items_list.append(item)

What’s the problem here?

The update method of Mapping accepts

one iterable object as an argument.

The update method of MappingSubclass,

however, accepts keys and values as

arguments.

Because MappingSubclass is derived

from Mapping and we haven’t overrided

the __init__ method, we will have an

error when the __init__ method calls update

with a single argument.

NAME MANGLING

class Mapping:

 def __init__(self, iterable):

 self.items_list = []

 self.update(iterable)

 def update(self, iterable):

 for item in iterable:

 self.items_list.append(item)

class MappingSubclass(Mapping):

 def update(self, keys, values):

 for item in zip(keys, values):

 self.items_list.append(item)

def __init__(self, iterable):

 self.items_list = []

 self.update(iterable)

To be clearer, because MappingSubclass inherits

from Mapping but does not provide a definition

for __init__, we implicitly have the following

__init__ method.

NAME MANGLING

class Mapping:

 def __init__(self, iterable):

 self.items_list = []

 self.update(iterable)

 def update(self, iterable):

 for item in iterable:

 self.items_list.append(item)

class MappingSubclass(Mapping):

 def update(self, keys, values):

 for item in zip(keys, values):

 self.items_list.append(item)

def __init__(self, iterable):

 self.items_list = []

 self.update(iterable)

This __init__ method references an update

method. Python will simply look for the most

local definition of update here.

NAME MANGLING

class Mapping:

 def __init__(self, iterable):

 self.items_list = []

 self.update(iterable)

 def update(self, iterable):

 for item in iterable:

 self.items_list.append(item)

class MappingSubclass(Mapping):

 def update(self, keys, values):

 for item in zip(keys, values):

 self.items_list.append(item)

def __init__(self, iterable):

 self.items_list = []

 self.update(iterable)

The signatures of the update call and the update

definition do not match. The __init__ method

depends on a certain implementation of update

being available. Namely, the update defined in

Mapping.

NAME MANGLING

>>> import map

>>> x = map.MappingSubclass([1, 2, 3])

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "map.py", line 4, in __init__

 self.update(iterable)

TypeError: update() takes exactly 3 arguments (2 given)

NAME MANGLING

class Mapping:

 def __init__(self, iterable):

 self.items_list = []

 self.__update(iterable)

 def update(self, iterable):

 for item in iterable:

 self.items_list.append(item)

 __update = update # private copy of original update() method

class MappingSubclass(Mapping):

 def update(self, keys, values):

 # provides new signature for update()

 # but does not break __init__()

 for item in zip(keys, values):

 self.items_list.append(item)

NAME MANGLING

>>> import map

>>> x = map.MappingSubclass([1,2,3])

>>> x.items_list

[1, 2, 3]

>>> x.update(['key1', 'key2'], ['val1', 'val2'])

>>> x.items_list

[1, 2, 3, ('key1', 'val1'), ('key2', 'val2')]

STRUCTS IN PYTHON

• You can create a struct-like object by using an empty class.

>>> class Struct:

... pass

...

>>> node = Struct()

>>> node.label = 4

>>> node.data = "My data string"

>>> node.next = Struct()

>>> next_node = node.next

>>> next_node.label = 5

>>> print node.next.label

5

EMULATING METHODS

• You can create custom classes that emulate methods that have significant meaning

when combined with other Python objects.

• The statement print >> typically prints to the file-like object that follows.

Specifically, the file-like object needs a write() method. This means I can make any

class which, as long as it has a write() method, is a valid argument for this print

statement.

>>> class Random:

... def write(self, str_in):

... print "The string to write is: " + str(str_in)

>>> someobj = Random()

>>> print >> someobj, "whatever"

The string to write is: whatever

CUSTOM EXCEPTIONS

• We mentioned in previous lectures that exceptions can also be custom-made. This is

done by creating a class which is derived from the Exception base class.

>>> from myexcept import MyException

>>> try:

... raise MyException("My custom error message.")

... except MyException as e:

... print "Error: " + str(e)

...

Error: My custom error message.

class MyException(Exception):

 def __init__(self, value):

 self.parameter = value

 def __str__(self):

 return self.parameter

ITERABLES, ITERATORS, AND
GENERATORS

• Before we move on to the standard library (in particular, the itertools module), let’s
make sure we understand iterables, iterators, and generators.

• An iterable is any Python object with the following properties:

• It can be looped over (e.g. lists, strings, files, etc).

• Can be used as an argument to iter(), which returns an iterator.

• Must define __iter__() (or __getitem__()).

ITERABLES, ITERATORS, AND
GENERATORS

• Before we move on to the standard library (in particular, the itertools module), let’s
make sure we understand iterables, iterators, and generators.

• An iterator is a Python object with the following properties:

• Must define __iter__() to return itself.

• Must define the next() method to return the next value every time it is invoked.

• Must track the “position” over the container of which it is an iterator.

ITERABLES, ITERATORS, AND
GENERATORS

• A common iterable is the list. Lists, however, are not iterators. They are simply Python

objects for which iterators may be created.

>>> a = [1, 2, 3, 4]

>>> # a list is iterable - it has the __iter__ method

>>> a.__iter__

<method-wrapper '__iter__' of list object at 0x014E5D78>

>>> # a list doesn’t have the next method, so it's not an iterator
>>> a.next

AttributeError: 'list' object has no attribute 'next'

>>> # a list is not its own iterator

>>> iter(a) is a

False

ITERABLES, ITERATORS, AND
GENERATORS

• The listiterator object is the iterator object associated with a list. The iterator version

of a listiterator object is itself, since it is already an iterator.

>>> # iterator for a list is actually a 'listiterator' object

>>> ia = iter(a)

>>> ia

<listiterator object at 0x014DF2F0>

>>> # a listiterator object is its own iterator

>>> iter(ia) is ia

True

ITERATORS

• How does this magic work?
for item in [1, 2, 3, 4]:

 print item

ITERATORS

• How does this magic work?

• The for statement calls the

iter() function on the

sequence object. The iter()

call will return an iterator

object (as long as the

argument has a built-in

__iter__ function) which

defines next() for accessing

the elements one at a time.

• Let’s do it manually:

>>> mylist = [1, 2, 3, 4]

>>> it = iter(mylist)

>>> it

<listiterator object at 0x2af6add16090>

>>> it.next()

1

>>> it.next()

2

>>> it.next()

3

>>> it.next()

4

>>> it.next() # Raises StopIteration Exception

ITERABLES, ITERATORS, AND
GENERATORS

>>> mylist = [1, 2, 3, 4]

>>> for item in mylist:

... print item

>>> mylist = [1, 2, 3, 4]

>>> i = iter(mylist) # i = mylist.__iter__()

>>> print i.next()

1

>>> print i.next()

2

>>> print i.next()

3

>>> print i.next()

4

>>> print i.next()

StopIteration Exception Raised

Is equivalent to

ITERATORS

• Let’s create a custom iterable object.

class Even:

 def __init__(self, data):

 self.data = data

 self.index = 0

 def __iter__(self):

 return self

 def next(self):

 if self.index >= len(self.data):

 raise StopIteration

 ret = self.data[self.index]

 self.index = self.index + 2

 return ret

ITERATORS

• Let’s create a custom iterable object.

>> from even import Even

>>> evenlist = Even(range(0,10))

>>> iter(evenlist)

<even.Even instance at 0x2ad24d84a128>

>>> for item in evenlist:

... print item

...

0

2

4

6

8

ITERABLES, ITERATORS, AND
GENERATORS

• Generators are a way of defining iterators using a simple function notation.

Generators use the yield statement to return results when they are ready, but Python

will remember the context of the generator when this happens.

Even though generators are not technically iterator objects, they can be used

wherever iterators are used.

• Generators are desirable because they are lazy: they do no work until the first value

is requested, and they only do enough work to produce that value. As a result, they

use fewer resources, and are usable on more kinds of iterables.

GENERATORS

• An easy way to create “iterators”. Use the yield statement whenever data is

returned. The generator will pick up where it left off when next() is called.

 def even(data):

 for i in range(0, len(data), 2):

 yield data[i]

>>> for elem in even(range(0,10)):

... print elem

...

0

2

4

6

8

ITERABLES, ITERATORS, AND
GENERATORS

>>> counter = count_generator()

>>> counter

<generator object count_generator at 0x…>
>>> next(counter)

0

>>> next(counter)

1

>>> iter(counter)

<generator object count_generator at 0x…>
>>> iter(counter) is counter

True

>>> type(counter)

<type 'generator'>

def count_generator():

 n = 0

 while True:

 yield n

 n = n + 1

ITERABLES, ITERATORS, AND
GENERATORS

• There are also generator comprehensions, which are very similar to list

comprehensions.

•

Equivalent to:

>>> l1 = [x**2 for x in range(10)] # list

>>> g1 = (x**2 for x in range(10)) # gen

def gen(exp):

 for x in exp:

 yield x**2

g1 = gen(iter(range(10)))

