SECURE, PARALLEL AND
DISTRIBUTED COMPUTING
WITH PYTHON

Lecutue 1: Introduction

INSTRUCTOR’S EXPECTATIONS

Reading

* Please read through the specifications a couple of times to understand the
requirements before asking questions.

* Most of the assignments/ problem statements will be long. Jumping the gun without
reading the whole thing could be detrimental.

INSTRUCTOR’S EXPECTATIONS

Basic Arithmetic/CS Knowledge

* The class includes implementing encryption algorithms, which involves
understanding basic mathematical concepts — including binary numbers, bitwise
operations, bit masking, modular arithmetic, etc.

* You are being forewarned. Math is not scary.

 If you need more information about these concepts, please ask the instructor or the
TA as soon as possible.

INSTRUCTOR’S EXPECTATIONS

Initiative
* Try a few different approaches before asking for help.

» This is not an introductory class. You will be expected to accomplish certain things
on your own.

* You will be given a week to 10 days for homeworks. Please start early. You need that
amount of time to complete them.

INSTRUCTOR’S EXPECTATIONS

Attendance

The class is very incremental. So, skipping a few classes will get you into trouble.You
are expected to attend class.

While we understand that sometimes, circumstances result in missing a couple of
classes, missing quite a few classes is not condoned.

Binge learning is not recommended, and will not be helpful.

INSTRUCTOR’S EXPECTATIONS

Effort

You need to devote time outside class to practice. Practice is the only way to better
yourself as a programmer.

The instructor and the TA are available to help.
Please do not hesitate to ask for

help.

THIS IS NOT A PYTHON PROGRAMMING
COURSE

The purpose of the course is to give students a grounding in computer security,
information management, parallel and distributed computing.

Python was chosen as the programming language of choice, since it is syntactically
easy, allowing you to concentrate on the core concepts of the course.

You do not need Python experience, the class will give you a brief introduction into
Python syntax, and introduce some important libraries.

The tests will focus on the core concepts of the course.

ABOUT PYTHON

Development started in the 1980’s by Guido van Rossum.
Only became popular in the last decade or so.
Python 2.x currently dominates, but Python 3.x is the future of Python.

Interpreted, very-high-level programming language. Supports a multitude of
programming paradigms.

OOP, functional, procedural, logic, structured, etc.
General purpose.

Very comprehensive standard library includes numeric modules, crypto services, OS
interfaces, networking modules, GUI support, development tools, etc.

NOTABLE FEATURES

Easy to learn.

Supports quick development.
Cross-platform.

Open Source.

Extensible.

Embeddable.

Large standard library and active community.

Useful for a wide variety of applications.

GETTING STARTED

Before we can begin, we need to actually install Python!
The first thing you should do is download and install a virtual machine.

We will be using an Ubuntu virtual machine in this course. All instructions and
examples will target this environment — this will make your life much easier.

Do not put this off until your first assignment is due!

GETTING STARTED

Choose and install an editor.
For Linux, | use the command line + gvim
If you would prefer to use an IDE, | recommend PyCharm (available for all platforms).

Windows users will likely use Idle by default.
Other editor options include vim, emacs, Notepad++, SublimeText, Eclipse, etc.

Throughout this course, | will be using an Ubuntu environment for all of the demos
involving 3rd party libraries.

The TA’s will be grading by running your program from the command line in an Ubuntu
environment. Please test using something similar if you’re using an IDE.

INTERPRETER

The standard implementation of Python is interpreted.

The interpreter translates Python code into bytecode, and this bytecode is executed
by the Python VM (similar to Java).

Two modes: normal and interactive.
Normal mode: entire .py files are provided to the interpreter.

Interactive mode: read-eval-print loop (REPL) executes statements piecewise.

* Let’s write our first Python program!

* In our favorite editor, let’s create
helloworld.py with the following contents:

INTERPRETER - NORMAL MODE

(rHes ey

e On the terminal:

$ python3 helloworld.py

HellRiNey

World!

World!"Y)

* Note: In Python 2.x, print is a statement.
In Python 3.x, it is a function. If you are
using Python 2.x and want to get into
the 3.x habit, include at the beginning:

from e FERS N IPorE ‘\print function

* Now, you can write

("“Hello, World!"“W)

INTERPRETER - INTERACTIVE MODE

* Let’s accomplish the same task (and
more) in interactive mode.

e Some options:

-C : executes single command.

-O: use basic optimizations.

-d: debugging info

$ python3

>>> ("Hello, World!'“)

Hello, World!

>>> hellostring = "Hello, World!"
>>> hellostring

'Hello, World!'

>>> 2*5

10
>>> 2*hellostring

‘Hello, World'Hello, World!'
>>> i range (0, 3) :

("Hello, World!'"“)

Hello, World!
Hello, World!
Hello, World!

>>> exit ()

SOME FUNDAMENTALS

« Whitespace is significant in Python. Where s e s ol ol
other languages may use {} or (), Python uses : range (0, 3) :
indentation to denote code blocks. (1)

« Comments ()i

N eEe S comment rabout the

» Single-line comments denoted by #. :
myfunc function"""

e Multi-line comments begin and end with three

S.

S Rl cEion | YY)

* Typically, multi-line comments are meant for
documentation.

 Comments should express information that
cannot be expressed in code — do not restate
code.

PYTHON TYPING

Python is a strongly, dynamically typed language.
Strong Typing

Obviously, Python isn’t performing static type checking, but it does prevent mixing operations between mismatched
types.

Explicit conversions are required in order to mix types.
Example: 2 + ”four" - not going to fly

Dynamic Typing

All type checking is done at runtime.

No need to declare a variable or give it a type before use.

Let’s start by looking at Python’s built-in data types.

NUMERIC TYPES

* The subtypes are int, long, float and complex.

* Their respective constructors are int(), long(), float(), and
complex().

* All numeric types, except complex, support the typical
numeric operations you'd expect to find.

* Mixed arithmetic is supported, with the “narrower” type
widened to that of the other. The same rule is used for mixed
comparisons.

NUMERIC TYPES

$ python
int: equivalent to C’s long in 2.x but >>> 3 + 2
unlimited in 3.x. 3

>>> 18 % 5
float: equivalent to C’s doubles. 3

>>> abs (-7)
long: unlimited in 2.x and unavailable in

3.x. >>> float (9)

9.0
complex: complex numbers.

>>> int (5.3)
Supported operations include

constructors (i.e.int(3)), arithmetic, 2
negation, modulus, absolute value, >>> complex(1,2)
exponentiation, etc. (1+23)

>>> 2 ** g

2:5)0

SEQUENCE DATA TYPES

* There are seven sequence subtypes: strings, Unicode strings, lists, tuples,
bytearrays, buffers, and xrange objects.

« All data types support arrays of objects but with varying limitations.

* The most commonly used sequence data types are strings, lists, and tuples. The
xrange data type finds common use in the construction of enumeration- controlled
loops. The others are used less commonly.

SEQUENCE TYPES - STRINGS

* Created by simply enclosing characters in either
* single- or double-quotes. It’s enough to simply assign

* the string to a variable.
* Strings are immutable.

* There are a tremendous amount of built-in string methods.

my S €L r mg =2 SRR S TPl i e S e ¢

SEQUENCE TYPES - STRINGS

Python supports a number of escape sequences such as ‘\t’, ‘\n’, etc.

Placing ‘r’ before a string will yield its raw value.

There is a string formatting operator ‘%’ similar to C. A list of string formatting
symbols is available in documentation.

Two string literals beside one another are automatically concatenated
together.

(AN Sel=rkilie) “or)
(SN enailelh o)

("Python is- ™ SHEEUSEREE IS

SEQUENCE TYPES -

Unicode strings can be used to store and
manipulate Unicode data.

As simple as creating a normal string (just put a
‘u’ on it!).

Use Unicode-Escape encoding for special
characters.

Also has a raw mode, use ‘ur’ as a prefix.

To translate to a regular string, use the.encode()
method.

To translate from a regular string to Unicode,
use the unicode() function.

UNICODE STRINGS

myunicodestrl = u"Hi Class!"

myunicodestr2 = u"Hi\u0020Class!"
myunicodestrl, myunicodestr?2)

newunicode = u'\xed\xfo\xfc’
newunicode)

newstr = newunicode.encode('utf-8")

newstr)

unicode (newstr, 'utf-87))

Output:

Hi Class!Hi Class!
aou
aou
aou

SEQUENCE TYPES - LISTS

Lists are an incredibly useful
compound data type

Lists can be initialized by the
constructor, or with a bracket
structure containing 0 or more
elements.

Lists are mutable — it is
possible to change their
contents. They contain the
additional mutable
operations.

Lists are nestable. Feel free to
create lists of lists of lists...

My ARc - — S lRCR S S IAfc ode - apple ', 5234656]
mylist)

mylist[2] = 'banana'
mylist)

s S SH e SR REC T S e] o[fitem3 ', 'itemd']]
mylist)

AR Bt e ()
mylist)

mylist.pop())
mynewlist = [x*2 X
mynewlist)

range (0,5) 1]

Output:

[42, 'apple’, u'unicode apple’, 5234656]

[42, 'apple’, 'banana’, 5234656]

[42, 'apple’, '‘banana’, [[item1’, 'item21, [item3’, 'item4]]

[42, [[item1, item2T, [item3’, 'item41], 'apple’, '‘banana’] banana
[0, 2, 4, 6, 8]

SEQUENCE DATA TYPES

str: string, represented as a sequence
of 8-bit characters

unicode: stores an abstract sequence of
code points.

list: a compound, mutable data type
that can hold items of varying types.

tuple: a compound, immutable data
type that can hold items of varying
types. Comma separated items
surrounded by parentheses.

a few more — we’ll coverthem later.

$ python

>>> mylist = ["spam", "eggs",
>>> "eggs" in mylist

True

>>> len (mylist)

3

>>> mynewlist = ["coffee", "tea"]

>>> mylist + mynewlist

["spam', 'eggs', 'toast', 'coffee', 'tea']
>>> mytuple = tuple (mynewlist)

>>> mytuple

("coffee', 'tea')

>>> mytuple.index ("tea")
1

>>> mylonglist = ['spam',
>>> mylonglist[2:4]
["toast', 'coffee']

COMMON SEQUENCE OPERATIONS

Opgration Result

X STTRSE Trueif an item of sisequal to x, else False.
b Ehnlofme Bo s - Falseif an item of sisequal to x, elseTrue.
=M% o i Theconcatenation of sandt.

8. STy - 1T el nshallow copies of sconcatenated.

s[i] ith item of s,origin 0.

SRS o Slice of sfromi toj.

g.[1. =K] Slice of sfrom i to j with step k.

len (s) Length of s.

min (s) Smallest item of s.

max (s) Largest item of s.

S.1index (x) Index of the first occumrence of x in s.

SIEIO U G Total number of occurrences of X ins.

COMMON SEQUENCE OPERATIONS

* Mutable sequence types further support the following operations.

Operation
s [1'] =%

s [157 S

del, “sif ZeNil

sili. o5 Kk S5t

del s L5324

s.append (x)

Result
ltem i of sisreplaced by x.

Slice of sfromi to j isreplaced by the contents of t.

Sameas s[i;j] =[]
Theelements of s[i;j:k] are replaced by those of t.

Removes the elements of sJi;j:k] from the list.

Add x to the end of s.

COMMON SEQUENCE OPERATIONS

.extend (x)

+ C oL

Cinser (e
-pop ([1])
.remove (x)
.reverse ()

. sort ([cmp(, skeiplly FEE et ENNE

* Mutable sequence types further support the following operations.

Appends the contents of x to s.
Retum number of i’s for which s[i] == x.

Retum smallest k suchthat s[k] == x and i <= k <j.

Insert x at position i.

Same as x = g]i]; del s[i]; return x.
Same as del s[s.index(x)].
Reversesthe items of sin place.

Sort the items of sin place.

BASIC BUILT-IN DATA TYPES - SET

. set: an unordered collection
of unique objects.

» frozenset: an immutable
version of set.

>>> basket = ['apple', 'orange', 'apple', 'pear',
>>> fruit = set (basket)

>>> fruit

set (['orange', 'pear', 'apple'])

>>> 'orange' in fruit True

>>> 'crabgrass' in fruit False

>>> a = set('abracadabra')

>>»> b = set('alacazam')

>>> a

set(['a', |rv' 'b', 'C', 'd'])

>>»>> a - b

Set([lrl’ ld" lbl])

>> a | b

set(['a’, 'C', vr|, vdl’ !bl’ vm|, lzl, lll])

0

R

Q

()

BASIC BUILT-IN DATA TYPES - DICTS

* dict: hash tables, maps a set of keys to arbitrary objects.

>>> gradebook = dict()

>>> gradebook['Susan Student'] = 87.0
>>> gradebook

{'Susan Student': 87.0}

>>> gradebook['Peter Pupil'] = 94.0
>>> gradebook.keys ()

['Peter Pupil', 'Susan Student']

>>> gradebook.values ()

[94.0, 87.0]

>>> gradebook.has key('Tina Tenderfoot')
False

>>> gradebook['Tina Tenderfoot'] = 99.9

>>> gradebook

{'Peter Pupil': 94.0, 'Susan Student': 87.0, "Tina Tenderfoot': 99.9}

>>> gradebook['Tina Tenderfoot'] = [99.9, 85.7]

>>> gradebook

{'"Peter Pupil': 94.0, 'Susan Student': 87.0, 'Tina Tenderfoot': [99.9, S95.71}

PYTHON INPUT AND CONTROL FLOW

* So now we’ve seen some interesting Python data types. Notably, we’re very familiar with numeric types,

strings, and lists.

* Input in Python is done with the input() function. It can take a string prompt as a parameter and returns a

string. If we need to store th input as a different type, we would have to cast it.
* Eg:

X = int (intput (Yenter a number: %))

« That’s not enough to create a useful program, so let’s get some control flow tools under our belt.

CONTROL FLOW TOOLS

While loops have the following general
structure.

expression:
statements

 Here, statements refers to one or more lines of
Python code.

 The conditional expression may be any
expression, where any non-zero value is true.

* The loop iterates while the expression is true.

* Note: All the statements indented by the same
amount after a programming construct are
considered to be part of a single block of
code.

Trued
Trued
True6
True’

CONTROL FLOW TOOLS

a 1
The if statement has the following general form. b=20
. : if a:
if expression: T e =
print ("a 1s true)
statements if not b
print (b 1s false!™)
if a and b:
 If the boolean expression evaluates to True, the P il’i; ("a and b are true!"™)
if a ox c
statements are executed. 25
print ("a or b 1s true!")
* Otherwise, they are skipped entirely. .
a istrue!
b isfalse!

a or b istrue!

CONTROL FLOW TOOLS

You can also pair an else with an if statement. 2 F ;
=()
1f expressHions LA
statements if a > b:
else: B Ay C: :
fig ‘ print ("a is greatest")
St a femeines LR
print ("c 1s greatest")
The elif keyword can be used to specify an else elif b > c:
if statement. print ("b is greatest")
print ("c 1s greatest")

Furthermore, if statements may be nested
within each other.

c is greatest

CONTROL FLOW TOOLS

The for loop has the following general form.
var seqguence .

statements

If a sequence contains an expression list, it is evaluated first.

Then, the first item in the sequence is assigned to the iterating variable var.

Next, the statements are executed.
Each item in the sequence is assigned to var, and the statements are executed until the
entire sequence is exhausted.

For loops may be nested with other control flow tools such as while loops and if
statements.

CONTROL FLOW TOOLS

Python has two handy functions for creating a range of integers, typically used in for
loops.

These functions are range() and xrange(). xrange() is only available on python 2

They both create a sequence of integers, but range() creates a list while xrange() creates
an xrange object.

Essentially, range() creates the list statically while xrange() will generate items in the list
as they are needed. (python 2)

Python 3 ranges are automatically xranges for larger sizes.

We will explore this concept further.

CONTROL FLOW TOOLS

There are four statements provided for manipulating loop structures.
These are break, continue, pass, and else.

break: terminates the current loop.

continue: immediately begin the next iteration of the loop.

pass: do nothing. Use when a statement is required syntactically.

else: represents a set of statements that should execute when a loop terminates.

LET’S WRITE A PYTHON PROGRAM

* Ok, so we got some basics out of the way. Now, we can try to create a real program. I
pulled a problem off of Project Euler. Let’s have some fun.

 Each new term in the Fibonacci sequence is generated by adding the previous two
terms. By starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

* By considering the terms in the Fibonacci sequence whose values do not exceed four
million, find the sum of the even-valued terms.

