
SECURE, PARALLEL AND
DISTRIBUTED COMPUTING

WITH PYTHON
Lecutue 1: Introduction

INSTRUCTOR’S EXPECTATIONS

Reading

• Please read through the specifications a couple of times to understand the

requirements before asking questions.

• Most of the assignments/ problem statements will be long. Jumping the gun without

reading the whole thing could be detrimental.

INSTRUCTOR’S EXPECTATIONS

Basic Arithmetic/CS Knowledge

• The class includes implementing encryption algorithms, which involves

understanding basic mathematical concepts – including binary numbers, bitwise

operations, bit masking, modular arithmetic, etc.

• You are being forewarned. Math is not scary.

• If you need more information about these concepts, please ask the instructor or the

TA as soon as possible.

INSTRUCTOR’S EXPECTATIONS

Initiative

• Try a few different approaches before asking for help.

• This is not an introductory class. You will be expected to accomplish certain things

on your own.

• You will be given a week to 10 days for homeworks. Please start early. You need that

amount of time to complete them.

INSTRUCTOR’S EXPECTATIONS

• Attendance

• The class is very incremental. So, skipping a few classes will get you into trouble. You

are expected to attend class.

• While we understand that sometimes, circumstances result in missing a couple of

classes, missing quite a few classes is not condoned.

• Binge learning is not recommended, and will not be helpful.

INSTRUCTOR’S EXPECTATIONS

• Effort

• You need to devote time outside class to practice. Practice is the only way to better

yourself as a programmer.

• The instructor and the TA are available to help.

• Please do not hesitate to ask for

• help.

THIS IS NOT A PYTHON PROGRAMMING
COURSE

• The purpose of the course is to give students a grounding in computer security,

information management, parallel and distributed computing.

• Python was chosen as the programming language of choice, since it is syntactically

easy, allowing you to concentrate on the core concepts of the course.

• You do not need Python experience, the class will give you a brief introduction into

Python syntax, and introduce some important libraries.

• The tests will focus on the core concepts of the course.

ABOUT PYTHON

• Development started in the 1980’s by Guido van Rossum.

• Only became popular in the last decade or so.

• Python 2.x currently dominates, but Python 3.x is the future of Python.

• Interpreted, very-high-level programming language. Supports a multitude of

programming paradigms.

• OOP, functional, procedural, logic, structured, etc.

• General purpose.

• Very comprehensive standard library includes numeric modules, crypto services, OS

interfaces, networking modules, GUI support, development tools, etc.

NOTABLE FEATURES

• Easy to learn.

• Supports quick development.

• Cross-platform.

• Open Source.

• Extensible.

• Embeddable.

• Large standard library and active community.

• Useful for a wide variety of applications.

GETTING STARTED

• Before we can begin, we need to actually install Python!

• The first thing you should do is download and install a virtual machine.

• We will be using an Ubuntu virtual machine in this course. All instructions and

examples will target this environment – this will make your life much easier.

• Do not put this off until your first assignment is due!

GETTING STARTED

• Choose and install an editor.

• For Linux, I use the command line + gvim

• If you would prefer to use an IDE, I recommend PyCharm (available for all platforms).

• Windows users will likely use Idle by default.

• Other editor options include vim, emacs, Notepad++, SublimeText, Eclipse, etc.

• Throughout this course, I will be using an Ubuntu environment for all of the demos

involving 3rd party libraries.

• The TA’s will be grading by running your program from the command line in an Ubuntu

environment. Please test using something similar if you’re using an IDE.

INTERPRETER

• The standard implementation of Python is interpreted.

• The interpreter translates Python code into bytecode, and this bytecode is executed

by the Python VM (similar to Java).

• Two modes: normal and interactive.

• Normal mode: entire .py files are provided to the interpreter.

• Interactive mode: read-eval-print loop (REPL) executes statements piecewise.

INTERPRETER – NORMAL MODE

• Let’s write our first Python program!

• In our favorite editor, let’s create
helloworld.py with the following contents:

• On the terminal:

$ python3 helloworld.py

Hello, World!

• Note: In Python 2.x, print is a statement.

In Python 3.x, it is a function. If you are

using Python 2.x and want to get into

the 3.x habit, include at the beginning:

from __future__ import print_function

• Now, you can write

print (“Hello, World!“)

print (“Hello, World!“)

INTERPRETER – INTERACTIVE MODE

• Let’s accomplish the same task (and

more) in interactive mode.

• Some options:

-c : executes single command.

-O: use basic optimizations.

-d: debugging info

$ python3

>>> print ("Hello, World!“)

Hello, World!

>>> hellostring = "Hello, World!"

>>> hellostring

'Hello, World!'

>>> 2*5

10

>>> 2*hellostring

‘Hello, World!Hello, World!'

>>> for i in range(0,3):

print ("Hello, World!“)

Hello, World!

Hello, World!

Hello, World!

>>> exit()

SOME FUNDAMENTALS

• Whitespace is significant in Python. Where

other languages may use {} or (), Python uses

indentation to denote code blocks.

• Comments

• Single-line comments denoted by #.

• Multi-line comments begin and end with three

“s.

• Typically, multi-line comments are meant for

documentation.

• Comments should express information that

cannot be expressed in code – do not restate

code.

here’s a comment

for i in range(0,3):

print (i)

def myfunc():

"""here’s a comment about the

myfunc function"""

print ("In a function!“)

PYTHON TYPING

• Python is a strongly, dynamically typed language.

• Strong Typing

• Obviously, Python isn’t performing static type checking, but it does prevent mixing operations between mismatched

types.

• Explicit conversions are required in order to mix types.

• Example: 2 + ”four" - not going to fly

• Dynamic Typing

• All type checking is done at runtime.

• No need to declare a variable or give it a type before use.

• Let’s start by looking at Python’s built-in data types.

NUMERIC TYPES

• The subtypes are int, long, float and complex.

• Their respective constructors are int(), long(), float(), and
complex().

• All numeric types, except complex, support the typical
numeric operations you’d expect to find.

• Mixed arithmetic is supported, with the “narrower” type
widened to that of the other. The same rule is used for mixed
comparisons.

NUMERIC TYPES

• int: equivalent to C’s long in 2.x but
unlimited in 3.x.

• float: equivalent to C’s doubles.

• long: unlimited in 2.x and unavailable in
3.x.

• complex: complex numbers.

• Supported operations include
constructors (i.e. int(3)), arithmetic,
negation, modulus, absolute value,
exponentiation, etc.

$ python

>>> 3 + 2

5

>>> 18 % 5

3

>>> abs(-7)

7

>>> float(9)

9.0

>>> int(5.3)

5

>>> complex(1,2)

(1+2j)

>>> 2 ** 8

256

SEQUENCE DATA TYPES

• There are seven sequence subtypes: strings, Unicode strings, lists, tuples,

bytearrays, buffers, and xrange objects.

• All data types support arrays of objects but with varying limitations.

• The most commonly used sequence data types are strings, lists, and tuples. The

xrange data type finds common use in the construction of enumeration- controlled

loops. The others are used less commonly.

SEQUENCE TYPES - STRINGS

• Created by simply enclosing characters in either

• single- or double-quotes. It’s enough to simply assign

• the string to a variable.

• Strings are immutable.

• There are a tremendous amount of built-in string methods.

mystring = "Hi, I'm a string!"

SEQUENCE TYPES - STRINGS

• Python supports a number of escape sequences such as ‘\t’, ‘\n’, etc.

• Placing ‘r’ before a string will yield its raw value.

• There is a string formatting operator ‘%’ similar to C. A list of string formatting

symbols is available in documentation.

• Two string literals beside one another are automatically concatenated
together.

print ("\tHello,\n“)

print (r"\tWorld!\n“)

print ("Python is “ + "so cool.“)

SEQUENCE TYPES – UNICODE STRINGS

• Unicode strings can be used to store and

manipulate Unicode data.

• As simple as creating a normal string (just put a

‘u’ on it!).

• Use Unicode-Escape encoding for special

characters.

• Also has a raw mode, use ‘ur’ as a prefix.

• To translate to a regular string, use the.encode()
method.

• To translate from a regular string to Unicode,

use the unicode() function.

myunicodestr1 = u"Hi Class!"

myunicodestr2 = u"Hi\u0020Class!"

print (myunicodestr1, myunicodestr2)

newunicode = u'\xe4\xf6\xfc’

print (newunicode)

newstr = newunicode.encode('utf-8')

print (newstr)

print (unicode(newstr, 'utf-8’))

Output:

HiClass!HiClass!
äöü
äöü
äöü

SEQUENCE TYPES - LISTS

• Lists are an incredibly useful

compound data type

• Lists can be initialized by the

constructor, or with a bracket

structure containing 0 or more

elements.

• Lists are mutable – it is

possible to change their

contents. They contain the

additional mutable

operations.

• Lists are nestable. Feel free to

create lists of lists of lists…

mylist = [42, 'apple', u'unicode apple', 5234656]

print (mylist)

mylist[2] = 'banana'

print (mylist)
mylist[3] = [['item1', 'item2'], ['item3', 'item4']]
print (mylist)
mylist.sort()

print (mylist)

print (mylist.pop())
mynewlist = [x*2 for x in range(0,5)] print
(mynewlist)

Output:

[42, 'apple', u'unicodeapple', 5234656]

[42, 'apple', 'banana', 5234656]

[42, 'apple', 'banana', [['item1', 'item2'], ['item3', 'item4']]]
[42, [['item1', 'item2'], ['item3', 'item4']], 'apple', 'banana'] banana
[0, 2, 4, 6, 8]

SEQUENCE DATA TYPES

• str: string, represented as a sequence

of 8-bit characters

• unicode: stores an abstract sequence of

code points.

• list: a compound, mutable data type

that can hold items of varying types.

• tuple: a compound, immutable data

type that can hold items of varying

types. Comma separated items

surrounded by parentheses.

• a few more – we’ll coverthem later.

COMMON SEQUENCE OPERATIONS

COMMON SEQUENCE OPERATIONS

• Mutable sequence types further support the following operations.

COMMON SEQUENCE OPERATIONS

• Mutable sequence types further support the following operations.

BASIC BUILT-IN DATA TYPES - SET

• set: an unordered collection

of unique objects.

• frozenset: an immutable

version of set.

BASIC BUILT-IN DATA TYPES - DICTS
• dict: hash tables, maps a set of keys to arbitrary objects.

PYTHON INPUT AND CONTROL FLOW

• So now we’ve seen some interesting Python data types. Notably, we’re very familiar with numeric types,

strings, and lists.

• Input in Python is done with the input() function. It can take a string prompt as a parameter and returns a

string. If we need to store th input as a different type, we would have to cast it.

• Eg:

X = int(intput(“enter a number: “))

• That’s not enough to create a useful program, so let’s get some control flow tools under our belt.

CONTROL FLOW TOOLS

While loops have the following general

structure.

while expression:

statements

• Here, statements refers to one or more lines of

Python code.

• The conditional expression may be any

expression, where any non-zero value is true.

• The loop iterates while the expression is true.

• Note: All the statements indented by the same

amount after a programming construct are

considered to be part of a single block of

code.

CONTROL FLOW TOOLS

The if statement has the following general form.

if expression:

statements

• If the boolean expression evaluates to True, the

statements are executed.

• Otherwise, they are skipped entirely.

CONTROL FLOW TOOLS

You can also pair an else with an if statement.

if expression:

statements

else:

statements

The elif keyword can be used to specify an else

if statement.

Furthermore, if statements may be nested

within each other.

CONTROL FLOW TOOLS

• The for loop has the following general form.

for var in sequence:

statements

• If a sequence contains an expression list, it is evaluated first.

• Then, the first item in the sequence is assigned to the iterating variable var.

• Next, the statements are executed.

• Each item in the sequence is assigned to var, and the statements are executed until the
entire sequence is exhausted.

• For loops may be nested with other control flow tools such as while loops and if
statements.

CONTROL FLOW TOOLS

• Python has two handy functions for creating a range of integers, typically used in for

loops.

• These functions are range() and xrange(). xrange() is only available on python 2

• They both create a sequence of integers, but range() creates a list while xrange() creates

an xrange object.

• Essentially, range() creates the list statically while xrange() will generate items in the list

as they are needed. (python 2)

• Python 3 ranges are automatically xranges for larger sizes.

• We will explore this concept further.

CONTROL FLOW TOOLS

• There are four statements provided for manipulating loop structures.

• These are break, continue, pass, and else.

• break: terminates the current loop.

• continue: immediately begin the next iteration of the loop.

• pass: do nothing. Use when a statement is required syntactically.

• else: represents a set of statements that should execute when a loop terminates.

LET’S WRITE A PYTHON PROGRAM

• Ok, so we got some basics out of the way. Now, we can try to create a real program. I

pulled a problem off of Project Euler. Let’s have some fun.

• Each new term in the Fibonacci sequence is generated by adding the previous two

terms. By starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

...

• By considering the terms in the Fibonacci sequence whose values do not exceed four

million, find the sum of the even-valued terms.

