HOW TO FLASK

And a very short intro to web development and databases

FLASK

* Flask is a web application framework written in Python.
* Created by an international Python community called Pocco.

* Based on 2 other Python projects:
* Werkzeug
» Itis a Web Server Gateway Interface (WSGI) toolkit that handles HTML requests, responses, etc.
* Jinja2
« A web templating system combines a template with a certain data source to render dynamic web
pages.

INSTALLING FLASK

Flask can be installed through pip
* pip install Flask

You can also install it inside a virtual environment (recommended)
This will install several dependencies, including Werkzeug and jinja

If you intend to use Flask with a SQL database, Python comes with SQLite3, but you
might need to install some sub-libraries like flask-wtf and sqglalchemy

FLASK APPLICATION

The flask constructor takes the name of the
current module as the parameter.

The route function of the Flask class is a
decorator, which tells the application which
URL should call the associated function.

In the example, ‘/’ URL is bound with
hello_world. Hence, when the home page of
web server is opened in a browser, the output
of this function will be rendered.

Finally the run method of the Flask class runs
the application on the local development
server.

flask Flask
app = Flask(_ name_)

@app.route('/’)
hello_world():

LA ITICE == —

app.run()

FLASK APPLICATION

The route function: flask Flask

» Signature: app.route(rule, options) app = Flask(__name_)

* The rule parameter represents URL binding
with the function.

* The options is a list of parameters to be @app.route(/")

forwarded to the underlying Rule object.
hello_world():

The run function:
» Signature: app.run(host, port, debug, options)
* Hostname defaults to localhost (127.0.0.1)

* Port number defaults to 5000. __name ==

app.run()

FLASK-ROUTING

Modern web frameworks use the routing technique to help
a user remember application URLs.

It is useful to access the desired page directly without
having to navigate from the home page.

Here, URL ‘/hello’ rule is bound to the hello_world()
function.

As a result, if a user visits http://localhost:5000/hello URL,
the output of the hello_world() function will be rendered in
the browser.

@app.route(‘/hello’)
def hello_world():

return ‘hello world’

FLASK-VARIABLES

It is possible to build a URL dynamically, by adding variable
parts to the rule parameter. This variable part is marked
as <variable-name> app = Flask(__name_)

from flask import Flask

It is passed as a keyword argument to the function with which

th le i lated.
© TWEIS assOf s @app.route('/hello/<name>")

In the following example, the rule parameter of route()
decorator contains <name> variable part attached to URL
‘/hello’. return 'Hello %s!' % name

def hello_name(name):

Hence, if the http://localhost:5000/hello/Spongebob is entered
as a URL in the browser, ‘Spongebob’ will be supplied to
hello_name() function as argument.

'

if name ==' main "

app.run(debug = True)

HTTP REQUESTS AND RESPONSES

When a client (browser) requests a URL, it sends a HTTP REQUEST to the server.
The server then sends the resulting rendered HTML page as a HTTP RESPONSE.
It is possible to send form information to the server as a part of the HTTP REQUEST.

There are several ways to make a HTTP REQUEST. The most common ways are:

* GET - Form information is a part of the URL. Not very secure. Amount of information is
limited. Preferred for testing.

* POST - Form information is not a part of the URL. Hidden from the world. Secure. No limit
on the amount of information. Preferred for production environments.

TEMPLATES

Placeholder

» A flask application renders an HTML <html> /

page upon requesting a URL. <body>

* However, the files may not be static
HTML. Sometimes, we want to add
information from the request/URL into </body>
the resulting HTML. </html>

<hl>Hello {{ name }} </hl>

* In order to do that, we have to
incorporate placeholders into the HTML
files, and place the files themselves into
a folder called “templates”

TEMPLATES

Generating HTML content from Python code is from flask import Flask, render_template
cumbersome, especially when variable data and
Python language elements like conditionals or loops
need to be put.

app = Flask(__name_)

This is where one <can take advantage @app.route('/hello/<user>')

of Jinja2 template engine def hello_name(user):

Instead of returning hardcode HTML from the

function, a HTML file can be rendered by the
render_template() function.

return render_ template(‘'hello.html', name = user)

! !

hello.html is the file on the previous slide. if__name =='_main_

app.run(debug = True)

MESSAGE FLASHING

It is important to give the user some feedback when something goes wrong.

It is relatively easy on a console application — we can just raise an exception and print to
the standard error stream.

It is harder to do so on a client server GUI application.
Generating such informative messages is easy in Flask web application.

The Flask module contains the flash() method. It passes a message to the next request,
which generally is a template.

* Signature: flash(message, category)
 message is the actual message to be flashed.

» category is optional. It can be either ‘error’, ‘info’ or ‘warning’.

MESSAGE FLASHING

* In order to remove message from session, template calls get_flashed messages().

 The HTML template file would contain the following lines. They will be rendered by
flash on the server side if an error occurs.

{% messages = get_flashed_messages() %}
{% if messages %}
{% message in messages %}
{{ message }}
{7 7o}
{7 7o}
{7 o}

MESSAGE FLASHING

» The flash app would contain the following lines upon redirect to ‘login.html’.

 When submitted, the login() view function verifies a username and password and accordingly
flashes a ‘success’ message or creates ‘error’ variable.

@app.route('/login', methods = ['GET', 'POST'])
deflogin():
error = None
if request.method == 'POST":
if request.form['username'] |='admin' or request.form['password'] !='admin':
error = 'Invalid username or password. Please try again!'
else:
flash("You were successfully logged in')
return redirect(url_for('index"))

return render_template('login.html', error = error)

SQLITE3

sqlite is a database management software that is available with a python installation.
The recommended version is sqlited

You an create a sqlite database on the terminal.

* $> squite3 database.db

» This creates a sqlite database called database.db

Once the sqlite prompt opens, exit immediately.

SQLITE 3

The setup.py file sets up a table in the
database using python. This file does not
use flask. Just sqlite.

We first establish a connection to the
database.

We then execute a SQL query to create a
table.

Finally, we close the connection.

import sqlite3
conn = sqlite3.connect('database.db'’)

print ("Opened database successfully")

conn.execute('CREATE TABLE students (Name
TEXT, Classes TEXT, Major TEXT, GPA TEXT)")
print ("Table created successfully")

conn.close()

USING SQL WITH FLASK

Form data sent to the flask app is available in a flask variable called request.form.

This is a dictionary. The key is the name attribute of the HTML form that was submitted.
Connect to the database using sql.connect

Grab the “cursor” of the database. This is like a file pointer.

Execute the query using the cursor object.

It is recommended that we commit the changes to the database if the query is successful
and rollback the changes if the query failed.

If the query were a select query, we can get the query results using the fetchall() function.
Once we are done, close the connection.

The results can be used to render various template HTML files.

