
HOW TO FLASK
And a very short intro to web development and databases

FLASK

• Flask is a web application framework written in Python.

• Created by an international Python community called Pocco.

• Based on 2 other Python projects:

• Werkzeug

• It is a Web Server Gateway Interface (WSGI) toolkit that handles HTML requests, responses, etc.

• Jinja2

• A web templating system combines a template with a certain data source to render dynamic web

pages.

INSTALLING FLASK

• Flask can be installed through pip

• pip install Flask

• You can also install it inside a virtual environment (recommended)

• This will install several dependencies, including Werkzeug and jinja

• If you intend to use Flask with a SQL database, Python comes with SQLite3, but you

might need to install some sub-libraries like flask-wtf and sqlalchemy

FLASK APPLICATION

• The flask constructor takes the name of the

current module as the parameter.

• The route function of the Flask class is a

decorator, which tells the application which

URL should call the associated function.

• In the example, ‘/’ URL is bound with

hello_world. Hence, when the home page of

web server is opened in a browser, the output

of this function will be rendered.

• Finally the run method of the Flask class runs

the application on the local development

server.

from flask import Flask

app = Flask(__name__)

@app.route(‘/’)

def hello_world():

 return ‘Hello World’

if __name__ == ‘__main__’:

 app.run()

FLASK APPLICATION

• The route function:

• Signature: app.route(rule, options)

• The rule parameter represents URL binding

with the function.

• The options is a list of parameters to be

forwarded to the underlying Rule object.

• The run function:

• Signature: app.run(host, port, debug, options)

• Hostname defaults to localhost (127.0.0.1)

• Port number defaults to 5000.

from flask import Flask

app = Flask(__name__)

@app.route(‘/’)

def hello_world():

 return ‘Hello World’

if __name__ == ‘__main__’:

 app.run()

FLASK-ROUTING

• Modern web frameworks use the routing technique to help

a user remember application URLs.

• It is useful to access the desired page directly without

having to navigate from the home page.

• Here, URL ‘/hello’ rule is bound to the hello_world()

function.

• As a result, if a user visits http://localhost:5000/hello URL,

the output of the hello_world() function will be rendered in

the browser.

@app.route(‘/hello’)

def hello_world():

 return ‘hello world’

FLASK-VARIABLES

• It is possible to build a URL dynamically, by adding variable

parts to the rule parameter. This variable part is marked

as <variable-name>

• It is passed as a keyword argument to the function with which

the rule is associated.

• In the following example, the rule parameter of route()

decorator contains <name> variable part attached to URL

‘/hello’.

• Hence, if the http://localhost:5000/hello/Spongebob is entered

as a URL in the browser, ‘Spongebob’ will be supplied to

hello_name() function as argument.

from flask import Flask

app = Flask(__name__)

@app.route('/hello/<name>')

def hello_name(name):

 return 'Hello %s!' % name

if __name__ == '__main__':

 app.run(debug = True)

HTTP REQUESTS AND RESPONSES

• When a client (browser) requests a URL, it sends a HTTP REQUEST to the server.

• The server then sends the resulting rendered HTML page as a HTTP RESPONSE.

• It is possible to send form information to the server as a part of the HTTP REQUEST.

• There are several ways to make a HTTP REQUEST. The most common ways are:

• GET – Form information is a part of the URL. Not very secure. Amount of information is

limited. Preferred for testing.

• POST – Form information is not a part of the URL. Hidden from the world. Secure. No limit

on the amount of information. Preferred for production environments.

TEMPLATES

• A flask application renders an HTML

page upon requesting a URL.

• However, the files may not be static

HTML. Sometimes, we want to add

information from the request/URL into

the resulting HTML.

• In order to do that, we have to

incorporate placeholders into the HTML

files, and place the files themselves into

a folder called “templates”

<html>

 <body>

 <h1>Hello {{ name }} </h1>

 </body>

</html>

Placeholder

TEMPLATES

• Generating HTML content from Python code is

cumbersome, especially when variable data and

Python language elements like conditionals or loops

need to be put.

• This is where one can take advantage

of Jinja2 template engine

• Instead of returning hardcode HTML from the

function, a HTML file can be rendered by the

render_template() function.

• hello.html is the file on the previous slide.

from flask import Flask, render_template

app = Flask(__name__)

@app.route('/hello/<user>')

def hello_name(user):

 return render_template('hello.html', name = user)

if __name__ == '__main__':

 app.run(debug = True)

MESSAGE FLASHING

• It is important to give the user some feedback when something goes wrong.

• It is relatively easy on a console application – we can just raise an exception and print to

the standard error stream.

• It is harder to do so on a client server GUI application.

• Generating such informative messages is easy in Flask web application.

• The Flask module contains the flash() method. It passes a message to the next request,

which generally is a template.

• Signature: flash(message, category)

• message is the actual message to be flashed.

• category is optional. It can be either ‘error’, ‘info’ or ‘warning’.

MESSAGE FLASHING

• In order to remove message from session, template calls get_flashed_messages().

• The HTML template file would contain the following lines. They will be rendered by

flash on the server side if an error occurs.

{% with messages = get_flashed_messages() %}

 {% if messages %}

 {% for message in messages %}

 {{ message }}

 {% endfor %}

 {% endif %}

{% endwith %}

MESSAGE FLASHING

• The flash app would contain the following lines upon redirect to ‘login.html’.

• When submitted, the login() view function verifies a username and password and accordingly

flashes a ‘success’ message or creates ‘error’ variable.

@app.route('/login', methods = ['GET', 'POST'])

def login():

 error = None

 if request.method == 'POST':

 if request.form['username'] != 'admin' or request.form['password'] != 'admin':

 error = 'Invalid username or password. Please try again!'

 else:

 flash('You were successfully logged in')

 return redirect(url_for('index'))

 return render_template('login.html', error = error)

SQLITE3

• sqlite is a database management software that is available with a python installation.

• The recommended version is sqlite3

• You an create a sqlite database on the terminal.

• $> squite3 database.db

• This creates a sqlite database called database.db

• Once the sqlite prompt opens, exit immediately.

SQLITE 3

• The setup.py file sets up a table in the

database using python. This file does not

use flask. Just sqlite.

• We first establish a connection to the

database.

• We then execute a SQL query to create a

table.

• Finally, we close the connection.

import sqlite3

conn = sqlite3.connect('database.db')

print ("Opened database successfully")

conn.execute('CREATE TABLE students (Name

 TEXT, Classes TEXT, Major TEXT, GPA TEXT)')

print ("Table created successfully")

conn.close()

USING SQL WITH FLASK

• Form data sent to the flask app is available in a flask variable called request.form.

• This is a dictionary. The key is the name attribute of the HTML form that was submitted.

• Connect to the database using sql.connect

• Grab the “cursor” of the database. This is like a file pointer.

• Execute the query using the cursor object.

• It is recommended that we commit the changes to the database if the query is successful

and rollback the changes if the query failed.

• If the query were a select query, we can get the query results using the fetchall() function.

• Once we are done, close the connection.

• The results can be used to render various template HTML files.

