
LECTURE 7

The Standard Library Part 1:

Built-ins, time, sys, and os

THE PYTHON LANGUAGE

• Believe it or not, you now have all the Python syntax and structures you need already.

At this point, we can turn our attention to writing applications in Python.

There will still be some points to be made about the Python language as we continue

the course, but they will be brought to your attention when they come up.

• For now, let’s start by learning some of the libraries that every Python programmer
must know.

THE PYTHON STANDARD LIBRARY

• The Python Standard Library is a collection of modules that are distributed with every

Python installation. It is a vast assortment of useful tools and interfaces, which covers a

very wide range of domains.

Besides the standard library, there is also the Python Package Index (PyPI), the official

third-party repository for everything from simple modules to elaborate frameworks

written by other Python programmers. As of right now, there are 60,660 81,341 98,609

110069 packages in PyPI.

• We will start by spending the next couple of lectures covering the most commonly used

modules in the standard library. Then, we will spend the rest of the semester covering

widely-used third party packages.

STANDARD LIBRARY: BUILT-INS

• We’ve already learned about a lot of data types – such as numbers and lists – which

are part of the “core” of Python. That is, you don’t need to import anything to use
them.

However, it’s the standard library that actually defines these types, as well as many
other built-in components.

• We’ve already learned all about the built-in data types so we won’t re-cover that

material but we’ll start by looking at what other “built-ins” are defined by the
standard library.

STANDARD LIBRARY: BUILT-IN CONSTANTS

• There are a few built-in constants defined

by the standard library:

• True: true value of a bool type.

• False: false value of a bool type.

a = True

b = False

if a is True:

 print ("a is true.“)
else:

 print ("a is false")

if b is True:

 print ("b is true.")

else:

 print ("b is false.“)

STANDARD LIBRARY: BUILT-IN CONSTANTS

•

• None: used to represent the absence of a value. Similar to the null keyword in

many other languages.

conn = None

try:

 database = MyDatabase(db_host, db_user, db_password, db_database)

 conn = database.connect()

except DatabaseException:

 pass

if conn is None:

 print('The database could not connect')

else:

 print('The database could connect')

STANDARD LIBRARY: BUILT-IN CONSTANTS

• NotImplemented: returned when a comparison operation is not defined between

two types.

This constant is meant to be used in conjunction with “rich comparison” methods,
__lt__(), __eq__(), etc. Behind the scenes, when we execute the following

statement:

 Python is really executing this statement:

 The NotImplemented constant allows us to indicate that a does not have __lt__()

defined for b’s type, so perhaps we should try calling b’s __ge__() method with a as

an argument.

>>> a < b

>>> a.__lt__(b)

STANDARD LIBRARY: BUILT-IN CONSTANTS

class A:

 def __init__(self, value):

 self.value = value

 def __eq__(self, other):

 if isinstance(other, B):

 print('Comparing an A with a B')

 return other.value == self.value

 print('Could not compare A with other')

 return NotImplemented

class B:

 def __init__(self, value):

 self.value = value

 def __eq__(self, other):

 print('Could not compare B with other')

 return NotImplemented

>>> a = A(2)

>>> b = B(2)

>>> a == b # a.__eq__(b)

Comparing an A with a B

True

>>> b == a # b.__eq__(a)

Could not compare B with other

Comparing an A with a B

True

STANDARD LIBRARY: BUILT-IN CONSTANTS

• Ellipsis: for custom use in extended slicing syntax (not used by any built-in

function).

>>> class TwoDimList:

 def __init__(self, data):

 self.data = data

 def __getitem__(self, item):

 if item is Ellipsis:

 return [y for x in self.data for y in x]

 else:

 return self.data[item]

>>> x = TwoDimList([[1,2,3],[4,5,6],[7,8,9]])

>>> x[0] # x.__getitem__(0)

[1, 2, 3]

>>> x[...]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

STANDARD LIBRARY: BUILT-IN FUNCTIONS

• There are a huge

number of built-in

functions which are

always available.

We’ve seen a good
number of these

already and most

of them are “manual”

calls for actions

typically done another

way.

STANDARD LIBRARY: TIME

• The time module is responsible for providing time-related functions and conversion

methods. You can obtain access to time’s methods and attributes with the import
time statement.

• The most commonly used methods are:

• time.time() – returns the time in seconds since the epoch (typically 1/1/1970).

• time.sleep(s) – suspends execution for s seconds.

• time.clock() – returns the current processor time in seconds.

STANDARD LIBRARY: TIME

>>> import time

>>> def timer():

... s = time.time()

... time.sleep(5)

... e = time.time()

... print (e-s)

>>> def cpu_timer():

... s = time.clock()

... time.sleep(5)

... e = time.clock()

... print (e-s)

>>> timer()

5.00614309311

>>> cpu_timer()

0.000121

Here, we create two small timing functions

which measure time passed over a call to

time.sleep().

The time.time() method simply measures

elapsed wall clock time.

The time.clock() method, however, only

measures time during which the CPU is

actively working on behalf of the program.

When we sleep, we are suspending the

program for some time so the CPU is not

active during the sleeping time.

STANDARD LIBRARY: TIME

• There are some additional useful time methods but they all depend on the

struct_time class so we’ll cover that first. The struct_time class is also defined

in the time module. It is a class which simply has 9 attributes for describing a

particular time.

STANDARD LIBRARY: TIME

• The struct_time class is unique in that it uses a named tuple interface. You can

access the attributes of the class using either the attribute name (e.g. t.tm_year) or

an index (e.g. t[0]).

• The time.strftime(format[, t])method can be used to convert a

struct_time object t into a readable format. A table of the possible format string

arguments is found here.

https://docs.python.org/2/library/time.htmltime.strftime

STANDARD LIBRARY: TIME

• time.asctime([t]) – converts a struct_time object t into a specific formatted

output string. If t is not provided, the current time is used.

• time.gmtime([s]) – converts a time expressed in seconds s since the epoch to a

struct_time object in UTC. If s is not provided, time.time()is used.

• time.localtime([s]) – like time.gmtime([s]), but converts to a local time.

• time.mktime(t) – inverse of time.localtime([s]). Converts a struct_time

object t in local time to seconds since the epoch.

STANDARD LIBRARY: TIME

>>> time.time()

1433264623.282071

>>> time.gmtime()

time.struct_time(tm_year=2015, tm_mon=6, tm_mday=2,

tm_hour=17, tm_min=3, tm_sec=58, tm_wday=1, tm_yday=153,

tm_isdst=0)

>>> time.localtime()

time.struct_time(tm_year=2015, tm_mon=6, tm_mday=2,

tm_hour=13, tm_min=4, tm_sec=8, tm_wday=1, tm_yday=153,

tm_isdst=1)

>>> time.asctime(time.localtime())

'Tue Jun 2 13:05:00 2015'

>>> time.strftime("%A, %B %d, %Y",time.localtime())

'Tuesday, June 02, 2015'

STANDARD LIBRARY: SYS

• The sys module provides access to some variables used or maintained by the

interpreter as well as some methods for interacting with the interpreter. It allows you

to receive information about the runtime environment as well as make modifications

to it.

• To use the sys module, just execute the import sys statement.

STANDARD LIBRARY: SYS

• As we’ve already seen, one of the most common ways to use the sys module is to
access arguments passed to the program. This is done with the sys.argv list.

• The first element of the sys.argv list is always the module name, followed by the

whitespace-separated arguments.

import sys

for i in range(len(sys.argv)):

 print ("sys.argv[" + str(i) + "] is " + sys.argv[i])

$ python testargs.py here are some arguments

sys.argv[0] is testargs.py

sys.argv[1] is here

sys.argv[2] is are

sys.argv[3] is some

sys.argv[4] is arguments

STANDARD LIBRARY: SYS

• The sys.path variable specifies the locations where Python will look for imported

modules. The sys.path variable is also a list and may be freely manipulated by the

running program. The first element is always the “current” directory where the top-

level module resides.

import sys

print ("path has", len(sys.path), "members“)

sys.path.insert(0, "./samples")

import sample

sys.path = []

import math

$ python systest.py

path has 8 members

Hello from the sample module!

Traceback (most recent call last):

 File "systest.py", line 9, in ?

 import math

ImportError: No module named math

STANDARD LIBRARY: SYS

• Note that there are some modules that are always available to the interpreter

because they are built-in. The sys module is one of them. Use

sys.builtin_module_names to see which modules are built-in.

import sys

print ("path has", len(sys.path), "members“)

sys.path.insert(0, "./samples")

import sample

sys.path = []

import math

$ python systest.py

path has 8 members

Hello from the sample module!

Traceback (most recent call last):

 File "systest.py", line 9, in ?

 import math

ImportError: No module named math

STANDARD LIBRARY: SYS

• The sys.modules dictionary contains all of the modules currently imported.

• The sys.platform attribute gives information about the operating system.

>>> import sys

>>> sys.modules.keys()

['copy_reg', 'sre_compile', '_sre', 'encodings', 'site', '__builtin__',

'sysconfig', '__main__', 'encodings.encodings', 'math', 'abc',

'posixpath', '_weakrefset', 'errno', 'encodings.codecs', 'sre_constants',

're', '_abcoll', 'types', '_codecs', 'encodings.__builtin__',

'_warnings', 'encodings.latin_1', 'genericpath', 'stat', 'zipimport',

'_sysconfigdata', 'warnings', 'UserDict', 'sys', 'codecs', 'readline',

'os.path', 'signal', 'traceback', 'linecache', 'posix',

'encodings.aliases', 'exceptions', 'sre_parse', 'os', '_weakref']

>>> sys.platform

'linux2'

STANDARD LIBRARY: SYS

• The sys.version attribute provides information about the interpreter including

version, build number, and compiler used. This string is also displayed when the

interpreter is started.

$ python

Python 2.7.5 (default, Oct 5 2013, 01:47:54)

[GCC 3.4.3 20041212 (Red Hat 3.4.3-9.EL4)] on linux2

STANDARD LIBRARY: SYS

• The sys.stdin, sys.stdout, and sys.stderr attributes hold the file objects

corresponding to standard input, standard output, and standard error, respectively. Just

like every other attribute in the sys module, these may also be changed at any time!

If you want to restore the standard file objects to their original values, use the

sys.__stdin__, sys.__stdout__, and sys.__stderr__ attributes.

f = open("somefile.txt", "w")

sys.stdout = f

print ("This is going to be written to the file!“)
sys.stdout = sys.__stdout__

STANDARD LIBRARY: SYS

• The sys.exit([status])function can be used to exit a program gracefully. It

raises a SystemExit exception which, if not caught, will end the program.

• The optional argument status can be used to indicate a termination status. The value 0

indicates a successful termination, while an error message will print to stderr and

return 1.

• The sys module also defines a sys.exitfunc attribute. The function object

specified by this attribute is used to perform “cleanup actions” before the program
terminates.

STANDARD LIBRARY: OS

• The os module provides a common interface for operating system dependent

functionality.

Most of the functions are actually implemented by platform-specific modules, but

there is no need to explicitly call them as such.

STANDARD LIBRARY: OS

We’ve already seen how the os module can be used to work with files. We know that

there are built-in functions to open and close files but os extends file operations.

• os.rename(current_name, new_name) renames the file current_name to

new_name.

• os.remove(filename) deletes an existing file named filename.

STANDARD LIBRARY: OS

• There are also a number of directory

services provided by the os module.

• os.listdir(dirname) lists all of

the files in directory dirname.

• os.getcwd() returns the current

directory.

• os.chdir(dirname) will change

the current directory.

>>> os.listdir("demos")

['frac.py', 'dogs.py', 'csv_parser.py']

>>> os.listdir(".")

['lect5.py', 'demos', 'lect3.py']

>>> os.getcwd()

'/home/faculty/carnahan/CIS4930'

>>> os.chdir(os.getcwd() + "/demos")

>>> os.getcwd()

'/home/faculty/carnahan/CIS4930/demos'

>>> os.rename("dogs.py", "cats.py")

>>> os.listdir(".")

['frac.py', 'cats.py', 'csv_parser.py']

>>> os.remove("cats.py")

>>> os.listdir(".")

['frac.py', 'csv_parser.py']

STANDARD LIBRARY: OS

• Use os.mkdir(dirname) and os.rmdir(dirname) to make and remove a single

directory.

• Use os.makedirs(path/of/dirs) and os.removedirs(path/of/dirs) to

make and remove a hierarchy of directories.

• Make sure directories are empty before removal!

STANDARD LIBRARY: OS

>>> os.makedirs("dir1/dir2/dir3")

>>> os.listdir(".")

['frac.py', 'dir1', 'csv_parser.py']

>>> f = open("dir1/dir2/dir3/test", "w")

>>> f.write("hi!")

>>> f.close()

>>> for line in open("dir1/dir2/dir3/test", "r"):

... print line

...

hi!

>>> os.remove("dir1/dir2/dir3/test")

>>> os.removedirs("dir1/dir2/dir3")

>>> os.listdir(".")

['frac.py', 'csv_parser.py']

STANDARD LIBRARY: OS

• The os.walk(path)

method will generate

a tuple (dirpath,

dirnames, filenames)

for each directory

found by traversing

the directory tree

rooted at path.

>>> os.makedirs("dir1/dir2/dir3")

>>> os.listdir(".")

['frac.py', 'dir1', 'football.csv', 'csv_parser.py']

>>> os.mkdir("dir1/dir2/dir4")

>>> open("dir1/dir2/d2file", "w")

>>> open("dir1/dir2/dir3/d3file", "w")

>>> open("dir1/dir2/dir4/d4file", "w")

>>> path = os.getcwd()

>>> for (path, dirs, files) in os.walk(path):

... print ("Path: ", path)

... print ("Directories: ", dirs)

... print ("Files: ", files)

... print ("---")

STANDARD LIBRARY: OS

• The os.walk(path)

method will generate

a tuple (dirpath,

dirnames, filenames)

for each directory

found by traversing

the directory tree

rooted at path.

Path: /home/faculty/carnahan/CIS4930/demos

Directories: ['dir1']

Files: ['frac.py','football.csv','csv_parser.py']

Path: /home/faculty/carnahan/CIS4930/demos/dir1

Directories: ['dir2']

Files: []

Path:

/home/faculty/carnahan/CIS4930/demos/dir1/dir2

Directories: ['dir4', 'dir3']

Files: ['d2file']

Path:

/home/faculty/carnahan/CIS4930/demos/dir1/dir2/dir4

Directories: []

Files: ['d4file']

Path:

/home/faculty/carnahan/CIS4930/demos/dir1/dir2/dir3

Directories: []

Files: ['d3file']

STANDARD LIBRARY: OS

The os module includes an os.stat(path) method which will return file attributes

related to the path provided (equivalent to stat() system call).

Result is a stat structure which includes

• st_size: size of file in bytes.

• st_atime: time of most recent access.

• st_uid: user id of owner.

• st_nlink: number of hard links.

>>> import os

>>> stat_info = os.stat("football.csv")

>>> stat_info

posix.stat_result(st_mode=33216,

st_ino=83788199L, st_dev=20L,

st_nlink=1, st_uid=87871, st_gid=300,

st_size=648L, st_atime=1422387494,

st_mtime=1421257389,

st_ctime=1421257413)

>>> stat_info.st_mtime

1421257389.0

OS SERVICES

• The os.system(cmd) function executes the argument cmd in a subshell. The return

value is the exit status of the command.

>>> os.system("ls")

csv_parser.py dir1 football.csv frac.py

0

>>> os.system("touch newfile.txt")

0

>>> os.system("ls")

csv_parser.py dir1 football.csv frac.py newfile.txt

0

STANDARD LIBRARY: OS

• The os.exec(path, args) function will start a new process from path using the

args as arguments, replacing the current one. Alternatives include os.execve(),

os.execvp(), etc as usual. Arguments depend on version used.

$ python2.7

Python 2.7.5 (default, Oct 5 2013, 01:47:54)

[GCC 3.4.3 20041212 (Red Hat 3.4.3-9.EL4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import os

>>> os.execvp("python2.7", ("python2.7", "csv_parser.py"))

Aston_Villa has a minimum goal difference of 1

$

STANDARD LIBRARY: OS

• Combine the os.exec*() functions with os.fork() and os.wait() to spawn

processes from the current process. The former makes a copy of the current process,

the latter waits for a child process to finish. Use os.spawn() on Windows.

import os

import sys

pid = os.fork()

if not pid:

 os.execvp("python2.7", ("python2.7", "csv_parser.py"))

os.wait()

