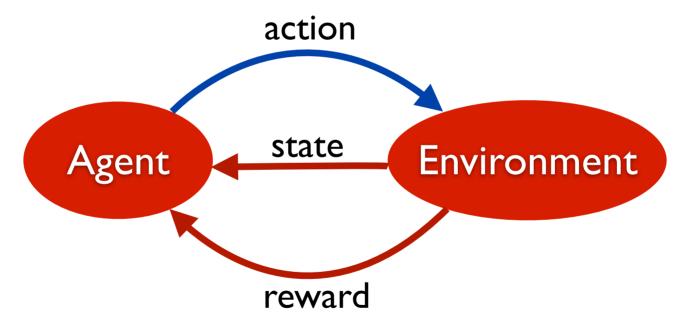
Foundations of Machine Learning Reinforcement Learning

Reinforcement Learning

- Agent exploring environment.
- Interactions with environment:



Problem: find action policy that maximizes cumulative reward over the course of interactions.

Key Features

- Contrast with supervised learning:
 - no explicit labeled training data.
 - distribution defined by actions taken.
- Delayed rewards or penalties.
- RL trade-off:
 - exploration (of unknown states and actions) to gain more reward information; vs.
 - exploitation (of known information) to optimize reward.

Applications

- Robot control e.g., Robocup Soccer Teams (Stone et al., 1999).
- Board games, e.g., TD-Gammon (Tesauro, 1995).
- Elevator scheduling (Crites and Barto, 1996).
- Ads placement.
- Telecommunications.
- Inventory management.
- Dynamic radio channel assignment.

This Lecture

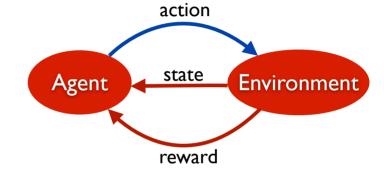
- Markov Decision Processes (MDPs)
- Planning
- Learning
- Multi-armed bandit problem

Markov Decision Process (MDP)

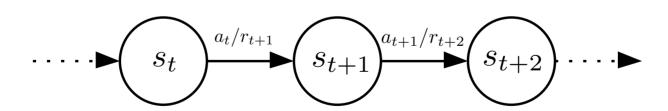
- Definition: a Markov Decision Process is defined by:
 - a set of decision epochs $\{0, \dots, T\}$.
 - \bullet a set of states S, possibly infinite.
 - a start state or initial state s_0 ;
 - \bullet a set of actions A, possibly infinite.
 - a transition probability $\Pr[s'|s,a]$: distribution over destination states $s' = \delta(s,a)$.
 - a reward probability Pr[r'|s,a]: distribution over rewards returned r'=r(s,a).

Model

- State observed at time $t: s_t \in S$.
- Action taken at time $t : a_t \in A$.
- \blacksquare State reached $s_{t+1} = \delta(s_t, a_t)$.



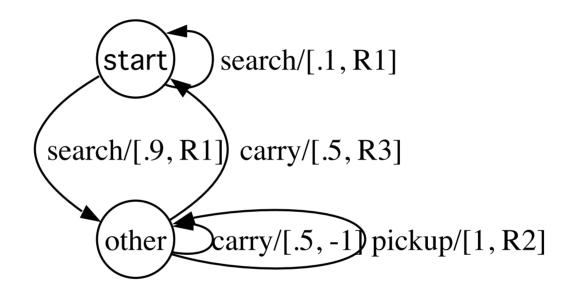
Reward received: $r_{t+1} = r(s_t, a_t)$.



MDPs - Properties

- Finite MDPs: A and S finite sets.
- **Finite horizon when** $T < \infty$.
- Reward r(s, a): often deterministic function.

Example - Robot Picking up Balls



Policy

- Definition: a policy is a mapping $\pi: S \to A$.
- Objective: find policy π maximizing expected return.
 - finite horizon return: $\sum_{t=0}^{T-1} r(s_t, \pi(s_t))$.
 - infinite horizon return: $\sum_{t=0}^{+\infty} \gamma^t r(s_t, \pi(s_t))$.
- Theorem: there exists an optimal policy from any start state.

Policy Value

- \blacksquare Definition: the value of a policy π at state s is
 - finite horizon:

$$V_{\pi}(s) = E \left[\sum_{t=0}^{T-1} r(s_t, \pi(s_t)) \middle| s_0 = s \right].$$

• infinite horizon: discount factor $\gamma \in [0, 1)$,

$$V_{\pi}(s) = \mathbf{E} \left[\sum_{t=0}^{+\infty} \gamma^t r(s_t, \pi(s_t)) \middle| s_0 = s \right].$$

Problem: find policy π with maximum value for all states.

Policy Evaluation

Analysis of policy value:

$$V_{\pi}(s) = \mathbf{E} \left[\sum_{t=0}^{+\infty} \gamma^{t} r(s_{t}, \pi(s_{t})) \middle| s_{0} = s \right].$$

$$= \mathbf{E}[r(s, \pi(s))] + \gamma \mathbf{E} \left[\sum_{t=0}^{+\infty} \gamma^{t} r(s_{t+1}, \pi(s_{t+1})) \middle| s_{0} = s \right]$$

$$= \mathbf{E}[r(s, \pi(s))] + \gamma \mathbf{E}[V_{\pi}(\delta(s, \pi(s)))].$$

Bellman equations (system of linear equations):

$$V_{\pi}(s) = \mathrm{E}[r(s, \pi(s))] + \gamma \sum_{s'} \Pr[s'|s, \pi(s)] V_{\pi}(s').$$

Bellman Equation - Existence and Uniqueness

Notation:

- transition probability matrix $P_{s,s'} = Pr[s'|s, \pi(s)]$.
- value column matrix $\mathbf{V} = V_{\pi}(s)$.
- expected reward column matrix: $\mathbf{R} = \mathrm{E}[r(s, \pi(s)]]$.
- Theorem: for a finite MDP, Bellman's equation admits a unique solution given by

$$\mathbf{V}_0 = (\mathbf{I} - \gamma \mathbf{P})^{-1} \mathbf{R}.$$

Bellman Equation - Existence and Uniqueness

Proof: Bellman's equation rewritten as

$$\mathbf{V} = \mathbf{R} + \gamma \mathbf{P} \mathbf{V}$$
.

• P is a stochastic matrix, thus,

$$\|\mathbf{P}\|_{\infty} = \max_{s} \sum_{s'} |\mathbf{P}_{ss'}| = \max_{s} \sum_{s'} \Pr[s'|s, \pi(s)] = 1.$$

- This implies that $\|\gamma \mathbf{P}\|_{\infty} = \gamma < 1$. The eigenvalues of P are all less than one and $(\mathbf{I} \gamma \mathbf{P})$ is invertible.
- Notes: general shortest distance problem (MM, 2002).

Optimal Policy

- Definition: policy π^* with maximal value for all states $s \in S$.
 - value of π^* (optimal value):

$$\forall s \in S, V_{\pi^*}(s) = \max_{\pi} V_{\pi}(s).$$

 optimal state-action value function: expected return for taking action a at states and then following optimal policy.

$$Q^{*}(s, a) = E[r(s, a)] + \gamma E[V^{*}(\delta(s, a))]$$
$$= E[r(s, a)] + \gamma \sum_{s' \in S} \Pr[s' \mid s, a] V^{*}(s').$$

Optimal Values - Bellman Equations

Property: the following equalities hold:

$$\forall s \in S, \ V^*(s) = \max_{a \in A} Q^*(s, a).$$

- Proof: by definition, for all s, $V^*(s) \le \max_{a \in A} Q^*(s, a)$.
 - If for some s we had $V^*(s) < \max_{a \in A} Q^*(s,a)$, then maximizing action would define a better policy.
- Thus,

$$V^*(s) = \max_{a \in A} \Big\{ E[r(s, a)] + \gamma \sum_{s' \in S} \Pr[s'|s, a] V^*(s') \Big\}.$$

This Lecture

- Markov Decision Processes (MDPs)
- Planning
- Learning
- Multi-armed bandit problem

Known Model

- Setting: environment model known.
- Problem: find optimal policy.
- Algorithms:
 - value iteration.
 - policy iteration.
 - linear programming.

Value Iteration Algorithm

$$\mathbf{\Phi}(\mathbf{V})(s) = \max_{a \in A} \left\{ E[r(s, a)] + \gamma \sum_{s' \in S} \Pr[s'|s, a]V(s') \right\}.$$

$$\mathbf{\Phi}(\mathbf{V}) = \max_{\pi} \{ \mathbf{R}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{V} \}.$$

ValueIteration(\mathbf{V}_0)

- 1 $\mathbf{V} \leftarrow \mathbf{V}_0 \quad \triangleright \mathbf{V}_0$ arbitrary value
- 2 while $\|\mathbf{V} \mathbf{\Phi}(\mathbf{V})\| \ge \frac{(1-\gamma)\epsilon}{\gamma} \mathbf{do}$
- $\mathbf{V} \leftarrow \mathbf{\Phi}(\mathbf{V})$
- 4 return $\Phi(\mathbf{V})$

VI Algorithm - Convergence

- Theorem: for any initial value V_0 , the sequence defined by $V_{n+1} = \Phi(V_n)$ converge to V^* .
- Proof: we show that Φ is γ -contracting for $\|\cdot\|_{\infty}$
- \longrightarrow existence and uniqueness of fixed point for Φ .
 - for any $s \in S$, let $a^*(s)$ be the maximizing action defining $\Phi(\mathbf{V})(s)$. Then, for $s \in S$ and any \mathbf{U} ,

$$\begin{aligned} \mathbf{\Phi}(\mathbf{V})(s) - \mathbf{\Phi}(\mathbf{U})(s) &\leq \mathbf{\Phi}(\mathbf{V})(s) - \left(\mathrm{E}[r(s, a^*(s))] + \gamma \sum_{s' \in S} \mathrm{Pr}[s' \mid s, a^*(s)] \mathbf{U}(s') \right) \\ &= \gamma \sum_{s' \in S} \mathrm{Pr}[s' \mid s, a^*(s)] [\mathbf{V}(s') - \mathbf{U}(s')] \\ &\leq \gamma \sum_{s' \in S} \mathrm{Pr}[s' \mid s, a^*(s)] \|\mathbf{V} - \mathbf{U}\|_{\infty} = \gamma \|\mathbf{V} - \mathbf{U}\|_{\infty}. \end{aligned}$$

Complexity and Optimality

lacksquare Complexity: convergence in $O(\log \frac{1}{\epsilon})$. Observe that

$$\|\mathbf{V}_{n+1} - \mathbf{V}_n\|_{\infty} \le \gamma \|\mathbf{V}_n - \mathbf{V}_{n-1}\|_{\infty} \le \gamma^n \|\mathbf{\Phi}(\mathbf{V}_0) - \mathbf{V}_0\|_{\infty}.$$

Thus,
$$\gamma^n \| \Phi(\mathbf{V}_0) - \mathbf{V}_0 \|_{\infty} \le \frac{(1 - \gamma)\epsilon}{\gamma} \Rightarrow n = O\left(\log \frac{1}{\epsilon}\right).$$

 \blacksquare ϵ -Optimality: let V_{n+1} be the value returned. Then,

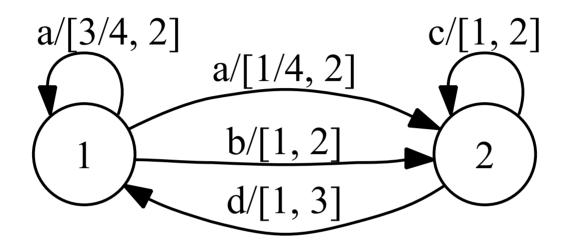
$$\|\mathbf{V}^* - \mathbf{V}_{n+1}\|_{\infty} \le \|\mathbf{V}^* - \mathbf{\Phi}(\mathbf{V}_{n+1})\|_{\infty} + \|\mathbf{\Phi}(\mathbf{V}_{n+1}) - \mathbf{V}_{n+1}\|_{\infty}$$

$$\le \gamma \|\mathbf{V}^* - \mathbf{V}_{n+1}\|_{\infty} + \gamma \|\mathbf{V}_{n+1} - \mathbf{V}_{n}\|_{\infty}.$$

Thus,

$$\|\mathbf{V}^* - \mathbf{V}_{n+1}\|_{\infty} \le \frac{\gamma}{1-\gamma} \|\mathbf{V}_{n+1} - \mathbf{V}_n\|_{\infty} \le \epsilon.$$

VI Algorithm - Example



$$\mathbf{V}_{n+1}(1) = \max\left\{2 + \gamma \left(\frac{3}{4}\mathbf{V}_n(1) + \frac{1}{4}\mathbf{V}_n(2)\right), 2 + \gamma \mathbf{V}_n(2)\right\}$$
$$\mathbf{V}_{n+1}(2) = \max\left\{3 + \gamma \mathbf{V}_n(1), 2 + \gamma \mathbf{V}_n(2)\right\}.$$

For
$$V_0(1) = -1$$
, $V_0(2) = 1$, $\gamma = 1/2$, $V_1(1) = V_1(2) = 5/2$.

But,
$$V^*(1) = 14/3$$
, $V^*(2) = 16/3$.

Policy Iteration Algorithm

```
PolicyIteration(\pi_0)
```

```
1 \quad \pi \leftarrow \pi_0 \quad \triangleright \pi_0 \text{ arbitrary policy}
2 \quad \pi' \leftarrow \text{NIL}
3 \quad \text{while } (\pi \neq \pi') \text{ do}
4 \quad \mathbf{V} \leftarrow \mathbf{V}_{\pi} \quad \triangleright \text{policy evaluation: solve } (\mathbf{I} - \gamma \mathbf{P}_{\pi}) \mathbf{V} = \mathbf{R}_{\pi}.
5 \quad \pi' \leftarrow \pi
6 \quad \pi \leftarrow \operatorname{argmax}_{\pi} \{ \mathbf{R}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{V} \} \quad \triangleright \text{ greedy policy improvement.}
7 \quad \text{return } \pi
```

Pl Algorithm - Convergence

Theorem: $let(V_n)_{n\in\mathbb{N}}$ be the sequence of policy values computed by the algorithm, then,

$$\mathbf{V}_n \leq \mathbf{V}_{n+1} \leq \mathbf{V}^*$$
.

Proof: let π_{n+1} be the policy improvement at the nth iteration, then, by definition,

$$\mathbf{R}_{\pi_{n+1}} + \gamma \mathbf{P}_{\pi_{n+1}} \mathbf{V}_n \ge \mathbf{R}_{\pi_n} + \gamma \mathbf{P}_{\pi_n} \mathbf{V}_n = \mathbf{V}_n.$$

- therefore, $\mathbf{R}_{\pi_{n+1}} \geq (\mathbf{I} \gamma \mathbf{P}_{\pi_{n+1}}) \mathbf{V}_n$.
- note that $(\mathbf{I} \gamma \mathbf{P}_{\pi_{n+1}})^{-1}$ preserves ordering:

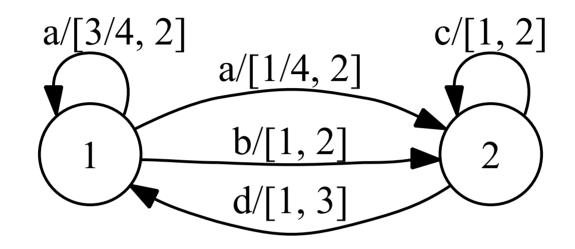
$$\mathbf{X} \geq \mathbf{0} \Rightarrow (\mathbf{I} - \gamma \mathbf{P}_{\pi_{n+1}})^{-1} \mathbf{X} = \sum_{k=0}^{\infty} (\gamma \mathbf{P}_{\pi_{n+1}})^k \mathbf{X} \geq \mathbf{0}.$$

• thus, $V_{n+1} = (I - \gamma P_{\pi_{n+1}})^{-1} R_{\pi_{n+1}} \ge V_n$.

Notes

- Two consecutive policy values can be equal only at last iteration.
- The total number of possible policies is $|A|^{|S|}$, thus, this is the maximal possible number of iterations.
 - best upper bound known $O(\frac{|A|^{|S|}}{|S|})$.

Pl Algorithm - Example



Initial policy:
$$\pi_0(1) = b, \pi_0(2) = c$$
.

Evaluation:
$$V_{\pi_0}(1) = 1 + \gamma V_{\pi_0}(2)$$

$$V_{\pi_0}(2) = 2 + \gamma V_{\pi_0}(2).$$

Thus,
$$V_{\pi_0}(1) = \frac{1+\gamma}{1-\gamma}$$
 $V_{\pi_0}(2) = \frac{2}{1-\gamma}$.

VI and PI Algorithms - Comparison

Theorem: let $(\mathbf{U}_n)_{n\in\mathbb{N}}$ be the sequence of policy values generated by the VI algorithm, and $(\mathbf{V}_n)_{n\in\mathbb{N}}$ the one generated by the PI algorithm. If $\mathbf{U}_0 = \mathbf{V}_0$, then,

 $\forall n \in \mathbb{N}, \ \mathbf{U}_n \leq \mathbf{V}_n \leq \mathbf{V}^*.$

Proof: we first show that Φ is monotonic. Let U and V be such that $U \leq V$ and let π be the policy such that $\Phi(U) = \mathbf{R}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{U}$. Then,

$$\mathbf{\Phi}(\mathbf{U}) \leq \mathbf{R}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{V} \leq \max_{\pi'} \{ \mathbf{R}'_{\pi} + \gamma \mathbf{P}'_{\pi} \mathbf{V} \} = \mathbf{\Phi}(\mathbf{V}).$$

VI and PI Algorithms - Comparison

• The proof is by induction on n. Assume $U_n \leq V_n$, then, by the monotonicity of Φ ,

$$\mathbf{U}_{n+1} = \mathbf{\Phi}(\mathbf{U}_n) \le \mathbf{\Phi}(\mathbf{V}_n) = \max_{\pi} \{ \mathbf{R}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{V}_n \}.$$

• Let π_{n+1} be the maximizing policy:

$$\pi_{n+1} = \underset{\pi}{\operatorname{argmax}} \{ \mathbf{R}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{V}_n \}.$$

Then,

$$\Phi(\mathbf{V}_n) = \mathbf{R}_{\pi_{n+1}} + \gamma \mathbf{P}_{\pi_{n+1}} \mathbf{V}_n \le \mathbf{R}_{\pi_{n+1}} + \gamma \mathbf{P}_{\pi_{n+1}} \mathbf{V}_{n+1} = \mathbf{V}_{n+1}.$$

Notes

- The PI algorithm converges in a smaller number of iterations than the VI algorithm due to the optimal policy.
- But, each iteration of the PI algorithm requires computing a policy value, i.e., solving a system of linear equations, which is more expensive to compute that an iteration of the VI algorithm.

Primal Linear Program

■ LP formulation: choose $\alpha(s) > 0$, with $\sum_{s} \alpha(s) = 1$.

$$\min_{\mathbf{V}} \sum_{s \in S} \alpha(s) V(s)$$

subject to $\forall s \in S, \forall a \in A, V(s) \ge \mathrm{E}[r(s, a)] + \gamma \sum_{s' \in S} \Pr[s'|s, a]V(s').$

- Parameters:
 - number rows: |S||A|.
 - number of columns: |S|.

Dual Linear Program

LP formulation:

$$\max_{\mathbf{x}} \sum_{s \in S, a \in A} \mathrm{E}[r(s, a)] \, x(s, a)$$
subject to $\forall s \in S, \sum_{a \in A} x(s', a) = \alpha(s') + \gamma \sum_{s \in S, a \in A} \mathrm{Pr}[s'|s, a] \, x(s', a)$
$$\forall s \in S, \forall a \in A, x(s, a) \geq 0.$$

- Parameters: more favorable number of rows.
 - number rows: |S|.
 - number of columns: |S||A|.

This Lecture

- Markov Decision Processes (MDPs)
- Planning
- Learning
- Multi-armed bandit problem

Problem

- Unknown model:
 - transition and reward probabilities not known.
 - realistic scenario in many practical problems, e.g., robot control.
- Training information: sequence of immediate rewards based on actions taken.
- Learning approches:
 - model-free: learn policy directly.
 - model-based: learn model, use it to learn policy.

Problem

- How do we estimate reward and transition probabilities?
 - use equations derived for policy value and Qfunctions.
 - but, equations given in terms of some expectations.
 - instance of a stochastic approximation problem.

Stochastic Approximation

- Problem: find solution of $\mathbf{x} = H(\mathbf{x})$ with $\mathbf{x} \in \mathbb{R}^N$ while
 - H(x) cannot be computed, e.g., H not accessible;
 - i.i.d. sample of noisy observations $H(\mathbf{x}_i) + \mathbf{w}_i$, available, $i \in [1, m]$, with $E[\mathbf{w}] = 0$.
- Idea: algorithm based on iterative technique:

$$\mathbf{x}_{t+1} = (1 - \alpha_t)\mathbf{x}_t + \alpha_t[H(\mathbf{x}_t) + \mathbf{w}_t]$$
$$= \mathbf{x}_t + \alpha_t[H(\mathbf{x}_t) + \mathbf{w}_t - \mathbf{x}_t].$$

• more generally $\mathbf{x}_{t+1} = \mathbf{x}_t + \alpha_t D(\mathbf{x}_t, \mathbf{w}_t)$.

Mean Estimation

Theorem: Let X be a random variable taking values in [0,1] and let x_0,\ldots,x_m be i.i.d. values of X. Define the sequence $(\mu_m)_{m\in\mathbb{N}}$ by

$$\mu_{m+1} = (1 - \alpha_m)\mu_m + \alpha_m x_m$$
 with $\mu_0 = x_0$.

Then, for
$$\alpha_m \in [0, 1]$$
, with $\sum_{m>0} \alpha_m = +\infty$ and $\sum_{m\geq 0} \alpha_m^2 < +\infty$,

$$\mu_m \xrightarrow{\mathrm{a.s}} \mathrm{E}[X].$$

Proof

 \blacksquare Proof: By the independence assumption, for $m \ge 0$,

$$\operatorname{Var}[\mu_{m+1}] = (1 - \alpha_m)^2 \operatorname{Var}[\mu_m] + \alpha_m^2 \operatorname{Var}[x_m]$$

$$\leq (1 - \alpha_m) \operatorname{Var}[\mu_m] + \alpha_m^2.$$

- We have $\alpha_m \to 0$ since $\sum_{m>0} \alpha_m^2 < +\infty$.
- Let $\epsilon > 0$ and suppose there exists $N \in \mathbb{N}$ such that for all $m \ge N$, $\mathrm{Var}[\mu_m] \ge \epsilon$. Then, for $m \ge N$,

$$Var[\mu_{m+1}] \le Var[\mu_m] - \alpha_m \epsilon + \alpha_m^2,$$

which implies
$$Var[\mu_{m+N}] \leq Var[\mu_N] - \epsilon \sum_{n=N}^{m+N} \alpha_n + \sum_{n=N}^{m+N} \alpha_n^2$$
,

contradicting
$$\operatorname{Var}[\mu_{m+N}] \ge 0$$
.

Mean Estimation

• Thus, for all $N \in \mathbb{N}$ there exists $m_0 \ge N$ such that $\operatorname{Var}[\mu_{m_0}] < \epsilon$. Choose N large enough so that $\forall m \ge N, \alpha_m \le \epsilon$. Then,

$$\operatorname{Var}[\mu_{m_0+1}] \leq (1 - \alpha_{m_0})\epsilon + \epsilon \alpha_{m_0} = \epsilon.$$

• Therefore, $\mu_m \leq \epsilon$ for all $m \geq m_0$ (L_2 convergence).

Notes

- \blacksquare special case: $\alpha_m = \frac{1}{m}$.
 - Strong law of large numbers.
- Connection with stochastic approximation.

TD(0) Algorithm

lacktriangle Idea: recall Bellman's linear equations giving V

$$V_{\pi}(s) = E[r(s, \pi(s))] + \gamma \sum_{s'} \Pr[s'|s, \pi(s)] V_{\pi}(s')$$

= $E[r(s, \pi(s))] + \gamma V_{\pi}(s')|s].$

- Algorithm: temporal difference (TD).
 - sample new state s'.
 - update: α depends on number of visits of s.

$$V(s) \leftarrow (1 - \alpha)V(s) + \alpha[r(s, \pi(s)) + \gamma V(s')]$$

$$= V(s) + \alpha[\underline{r(s, \pi(s)) + \gamma V(s') - V(s)}].$$
temporal difference of V values

TD(0) Algorithm

```
TD(0)()
       \mathbf{V} \leftarrow \mathbf{V}_0 \triangleright \text{initialization}.
       for t \leftarrow 0 to T do
   3
                s \leftarrow \text{SelectState}()
                for each step of epoch t do
                        r' \leftarrow \text{REWARD}(s, \pi(s))
                        s' \leftarrow \text{NEXTSTATE}(\pi, s)
                        V(s) \leftarrow (1-\alpha)V(s) + \alpha[r' + \gamma V(s')]
                        s \leftarrow s'
   9
        return V
```

Q-Learning Algorithm

Idea: assume deterministic rewards.

$$Q^{*}(s, a) = E[r(s, a)] + \gamma \sum_{s' \in S} \Pr[s' \mid s, a] V^{*}(s')$$
$$= E[r(s, a) + \gamma \max_{a \in A} Q^{*}(s', a)]$$

- Algorithm: $\alpha \in [0,1]$ depends on number of visits.
 - sample new state s'.
 - update:

$$Q(s,a) \leftarrow \alpha Q(s,a) + (1-\alpha)[r(s,a) + \gamma \max_{a' \in A} Q(s',a')].$$

Q-Learning Algorithm

(Watkins, 1989; Watkins and Dayan 1992)

```
Q-Learning(\pi)

1 Q \leftarrow Q_0 \triangleright initialization, e.g., Q_0 = 0.

2 for t \leftarrow 0 to T do

3 s \leftarrow SelectState()

4 for each step of epoch t do

5 a \leftarrow SelectAction(\pi, s) \triangleright policy \pi derived from Q, e.g., \epsilon-greedy.

6 r' \leftarrow Reward(s, a)

7 s' \leftarrow NextState(s, a)

8 Q(s, a) \leftarrow Q(s, a) + \alpha[r' + \gamma \max_{a'} Q(s', a') - Q(s, a)]

9 s \leftarrow s'

10 return Q
```

Notes

- Can be viewed as a stochastic formulation of the value iteration algorithm.
- Convergence for any policy so long as states and actions visited infinitely often.
- How to choose the action at each iteration? Maximize reward? Explore other actions? Q-learning is an off-policy method: no control over the policy.

Policies

- Epsilon-greedy strategy:
 - with probability $1-\epsilon$ greedy action from s ;
 - with probability ϵ random action.
- Epoch-dependent strategy (Boltzmann exploration):

$$p_t(a|s,Q) = \frac{e^{\frac{Q(s,a)}{\tau_t}}}{\sum_{a' \in A} e^{\frac{Q(s,a')}{\tau_t}}},$$

- $\tau_t \rightarrow 0$: greedy selection.
- larger τ_t : random action.

Convergence of Q-Learning

- Theorem: consider a finite MDP. Assume that for all $s \in S$ and $a \in A$, $\sum_{t=0}^{\infty} \alpha_t(s, a) = \infty$, $\sum_{t=0}^{\infty} \alpha_t^2(s, a) < \infty$ with $\alpha_t(s, a) \in [0, 1]$. Then, the Q-learning algorithm converges to the optimal value Q^* (with probability one).
 - note: the conditions on $\alpha_t(s,a)$ impose that each state-action pair is visited infinitely many times.

SARSA: On-Policy Algorithm

```
SARSA(\pi)
   1 Q \leftarrow Q_0 > initialization, e.g., Q_0 = 0.
   2 for t \leftarrow 0 to T do
               s \leftarrow \text{SelectState}()
               a \leftarrow \text{SelectAction}(\pi(Q), s) \triangleright \text{ policy } \pi \text{ derived from } Q, \text{ e.g., } \epsilon \text{-greedy.}
                for each step of epoch t do
                       r' \leftarrow \text{REWARD}(s, a)
                       s' \leftarrow \text{NextState}(s, a)
                       a' \leftarrow \text{SELECTACTION}(\pi(Q), s') \triangleright \text{ policy } \pi \text{ derived from } Q, \text{ e.g., } \epsilon \text{-greedy.}
                       Q(s,a) \leftarrow Q(s,a) + \alpha_t(s,a) [r' + \gamma Q(s',a') - Q(s,a)]
                       s \leftarrow s'
 10
                       a \leftarrow a'
 11
        return Q
```

Notes

- Differences with Q-learning:
 - two states: current and next states.
 - maximum reward for next state not used for next state, instead new action.
- SARSA: name derived from sequence of updates.

TD(λ) Algorithm

- Idea:
 - TD(0) or Q-learning only use immediate reward.
 - use multiple steps ahead instead, for n steps:

$$R_t^n = r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{n-1} r_{t+n} + \gamma^n V(s_{t+n})$$
$$V(s) \leftarrow V(s) + \alpha (R_t^n - V(s)).$$

- TD(λ) uses $R_t^{\lambda} = (1 \lambda) \sum_{n=0}^{\infty} \lambda^n R_t^n$.
- Algorithm:

$$V(s) \leftarrow V(s) + \alpha \left(R_t^{\lambda} - V(s) \right).$$

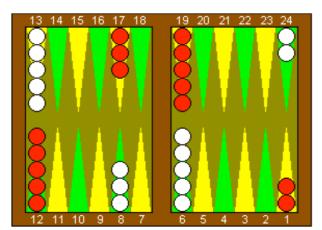
TD(λ) Algorithm

```
TD(\lambda)()
   1 \mathbf{V} \leftarrow \mathbf{V}_0 \triangleright \text{initialization}.
   2 \quad \mathbf{e} \leftarrow \mathbf{0}
   3
        for t \leftarrow 0 to T do
                 s \leftarrow \text{SelectState}()
   5
                 for each step of epoch t do
   6
                          s' \leftarrow \text{NEXTSTATE}(\pi, s)
                          \delta \leftarrow r(s, \pi(s)) + \lambda V(s') - V(s)
                          e(s) \leftarrow \lambda e(s) + 1
   8
   9
                          for u \in S do
 10
                                  if u \neq s then
                                           e(u) \leftarrow \gamma \lambda e(u)
 11
                                  V(u) \leftarrow V(u) + \alpha \delta e(u)
 12
 13
                          s \leftarrow s'
 14
         return V
```

TD-Gammon

(Tesauro, 1995)

- Large state space or costly actions: use regression algorithm to estimate Q for unseen values.
- Backgammon:
 - large number of positions: 30 pieces, 24-26 locations,
 - large number of moves.
- TD-Gammon: used neural networks.
 - non-linear form of $TD(\lambda)$, I.5M games played,
 - almost as good as world-class humans (master level).



This Lecture

- Markov Decision Processes (MDPs)
- Planning
- Learning
- Multi-armed bandit problem

Multi-Armed Bandit Problem

(Robbins, 1952)

- Problem: gambler must decide which arm of a N-slot machine to pull to maximize his total reward in a series of trials.
 - ullet stochastic setting: N lever reward distributions.
 - adversarial setting: reward selected by adversary aware of all the past.

Applications

- Clinical trials.
- Adaptive routing.
- Ads placement on pages.
- Games.

Multi-Armed Bandit Game

- \blacksquare For t=1 to T do
 - adversary determines outcome $y_t \in Y$.
 - player selects probability distribution p_t and pulls lever $I_t \in \{1, \dots, N\}$, $I_t \sim p_t$.
 - player incurs loss $L(I_t, y_t)$ (adversary is informed of p_t and I_t .
- Objective: minimize regret

Regret
$$(T) = \sum_{t=1}^{T} L(I_t, y_t) - \min_{i=1,...,N} \sum_{t=1}^{T} L(i, y_t).$$

Notes

- Player is informed only of the loss (or reward) corresponding to his own action.
- Adversary knows past but not action selected.
- Stochastic setting: loss $(L(1, y_t), \ldots, L(N, y_t))$ drawn according to some distribution $D = D_1 \otimes \cdots \otimes D_N$. Regret definition modified by taking expectations.
- Exploration/Exploitation trade-off: playing the best arm found so far versus seeking to find an arm with a better payoff.

Notes

- Equivalent views:
 - special case of learning with partial information.
 - one-state MDP learning problem.
- Simple strategy: ϵ -greedy: play arm with best empirical reward with probability $1-\epsilon_t$, random arm with probability ϵ_t .

Exponentially Weighted Average

Algorithm: Exp3, defined for $\eta, \gamma > 0$ by

$$p_{i,t} = (1 - \gamma) \frac{\exp(-\eta \sum_{s=1}^{t-1} \widehat{l}_{i,t})}{\sum_{i=1}^{N} \exp(-\eta \sum_{s=1}^{t-1} \widehat{l}_{i,t})} + \frac{\gamma}{N},$$

with
$$\forall i \in [1, N], \ \widehat{l}_{i,t} = \frac{L(I_t, y_t)}{p_{I_t, t}} 1_{I_t = i}$$
.

Guarantee: expected regret of

$$O(\sqrt{NT\log N}).$$

Exponentially Weighted Average

Proof: similar to the one for the Exponentially Weighted Average with the additional observation that:

$$E[\widehat{l}_{i,t}] = \sum_{i=1}^{N} p_{i,t} \frac{L(I_t, y_t)}{p_{I_t,t}} 1_{I_t=i} = L(i, y_t).$$

References

- Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 2 vols. Belmont, MA: Athena Scientific, 2007.
- Mehryar Mohri. Semiring Frameworks and Algorithms for Shortest-Distance Problems.
 Journal of Automata, Languages and Combinatorics, 7(3):321-350, 2002.
- Martin L. Puterman Markov decision processes: discrete stochastic dynamic programming.
 Wiley-Interscience, New York, 1994.
- Robbins, H. (1952), "Some aspects of the sequential design of experiments", Bulletin of the American Mathematical Society 58 (5): 527–535.
- Sutton, Richard S., and Barto, Andrew G. Reinforcement Learning: An Introduction. MIT Press, 1998.

References

- Gerald Tesauro. Temporal Difference Learning and TD-Gammon. Communications of the ACM 38 (3), 1995.
- Watkins, Christopher J. C. H. Learning from Delayed Rewards. Ph.D. thesis, Cambridge University, 1989.
- Christopher J. C. H. Watkins and Peter Dayan. *Q-learning*. Machine Learning, Vol. 8, No. 3-4, 1992.

Appendix

Stochastic Approximation

- Problem: find solution of $\mathbf{x} = H(\mathbf{x})$ with $\mathbf{x} \in \mathbb{R}^N$ while
 - H(x) cannot be computed, e.g., H not accessible;
 - i.i.d. sample of noisy observations $H(\mathbf{x}_i) + \mathbf{w}_i$, available, $i \in [1, m]$, with $E[\mathbf{w}] = 0$.
- Idea: algorithm based on iterative technique:

$$\mathbf{x}_{t+1} = (1 - \alpha_t)\mathbf{x}_t + \alpha_t[H(\mathbf{x}_t) + \mathbf{w}_t]$$
$$= \mathbf{x}_t + \alpha_t[H(\mathbf{x}_t) + \mathbf{w}_t - \mathbf{x}_t].$$

• more generally $\mathbf{x}_{t+1} = \mathbf{x}_t + \alpha_t D(\mathbf{x}_t, \mathbf{w}_t)$.

Supermartingale Convergence

- Theorem: let X_t, Y_t, Z_t be non-negative random variables such that $\sum_{t=0}^{\infty} Y_t < \infty$. If the following condition holds: $\mathbb{E}\left[X_{t+1} \middle| \mathcal{F}_t\right] \leq X_t + Y_t Z_t$, then,
 - X_t converges to a limit (with probability one).
 - $\bullet \sum_{t=0}^{\infty} Z_t < \infty.$

Convergence Analysis

Convergence of $\mathbf{x}_{t+1} = \mathbf{x}_t + \alpha_t D(\mathbf{x}_t, \mathbf{w}_t)$, with history \mathcal{F}_t defined by

$$\mathcal{F}_t = \{ (\mathbf{x}_{t'})_{t' < t}, (\alpha_{t'})_{t' < t}, (\mathbf{w}_{t'})_{t' < t} \}.$$

- Theorem: let $\Psi \colon \mathbf{x} \to \frac{1}{2} \|\mathbf{x} \mathbf{x}^*\|_2^2$ for some \mathbf{x}^* and assume that
 - $\bullet \exists K_1, K_2 \colon \operatorname{E} \left[\|D(\mathbf{x}_t, \mathbf{w}_t)\|_2^2 \, \middle| \, \mathcal{F}_t \right] \leq K_1 + K_2 \, \Psi(\mathbf{x}_t);$
 - $\exists c \colon \nabla \Psi(\mathbf{x}_t)^{\top} \mathbf{E} \left[D(\mathbf{x}_t, \mathbf{w}_t) \, \middle| \, \mathcal{F}_t \right] \leq -c \, \Psi(\mathbf{x}_t);$ $\alpha_t > 0, \sum_{t=0}^{\infty} \alpha_t = \infty, \sum_{t=0}^{\infty} \alpha_t^2 < \infty.$

Then, $\mathbf{x}_t \xrightarrow{\mathrm{a.s}} \mathbf{x}^*$.

Convergence Analysis

 \blacksquare Proof: since Ψ is a quadratic function,

$$\Psi(\mathbf{x}_{t+1}) = \Psi(\mathbf{x}_t) + \nabla \Psi(\mathbf{x}_t)^{\top} (\mathbf{x}_{t+1} - \mathbf{x}_t) + \frac{1}{2} (\mathbf{x}_{t+1} - \mathbf{x}_t)^{\top} \nabla^2 \Psi(\mathbf{x}_t) (\mathbf{x}_{t+1} - \mathbf{x}_t).$$

Thus,

$$\begin{split} \mathbf{E}\left[\Psi(\mathbf{x}_{t+1})\big|\mathcal{F}_{t}\right] &= \Psi(\mathbf{x}_{t}) + \alpha_{t}\nabla\Psi(\mathbf{x}_{t})^{\top}\,\mathbf{E}\left[D(\mathbf{x}_{t},\mathbf{w}_{t})\big|\mathcal{F}_{t}\right] + \frac{\alpha_{t}^{2}}{2}\,\mathbf{E}\left[\|D(\mathbf{x}_{t},\mathbf{w}_{t})\|^{2}\big|\mathcal{F}_{t}\right] \\ &\leq \Psi(\mathbf{x}_{t}) - \alpha_{t}c\Psi(\mathbf{x}_{t}) + \frac{\alpha_{t}^{2}}{2}(K_{1} + K_{2}\Psi(\mathbf{x}_{t})) & \text{non-neg. for} \\ &= \Psi(\mathbf{x}_{t}) + \frac{\alpha_{t}^{2}K_{1}}{2} - \left(\alpha_{t}c - \frac{\alpha_{t}^{2}K_{2}}{2}\right)\Psi(\mathbf{x}_{t}). \end{split}$$

- By the supermartingale convergence theorem, $\Psi(\mathbf{x}_t)$ converges and $\sum_{t=0}^{\infty} \left(\alpha_t c \frac{\alpha_t^2 K_2}{2} \right) \Psi(\mathbf{x}_t) < \infty$.
- Since $\alpha_t > 0$, $\sum_{t=0}^{\infty} \alpha_t = \infty$, $\sum_{t=0}^{\infty} \dot{\alpha_t^2} < \infty$, $\Psi(\mathbf{x}_t)$ must converge to 0.