Foundations of Machine Learning
Reinforcement Learning

Reinforcement Learning

B Agent exploring environment.

B |[nteractions with environment:
action

state E

'nvironment

reward

B Problem: find action policy that maximizes
cumulative reward over the course of interactions.

Key Features

B Contrast with supervised learning:

® no explicit labeled training data.

e distribution defined by actions taken.
B Delayed rewards or penalties.
B RL trade-off:

® exploration (of unknown states and actions) to
gain more reward information; vs.

® exploitation (of known information) to optimize
reward.

Applications

Robot control e.g., Robocup Soccer Teams (Stone et
al., 1999).

Board games, e.g., TD-Gammon (Tesauro, 1995).
Elevator scheduling (Crites and Barto, 1996).

Ads placement.

Telecommunications.

Inventory management.

Dynamic radio channel assignment.

This Lecture

B Markov Decision Processes (MDPs)
® Planning
B [earning

® Multi-armed bandit problem

Markov Decision Process (MDP)

B Definition: a Markov Decision Process is defined by:
® a set of decision epochs{0,...,T}.
® a set of states S, possibly infinite.
® a start state or initial state so;
® a set of actions A, possibly infinite.

® a transition probability Pr[s’|s, a]: distribution over
destination states s’ =4(s, a).

® a reward probability Pr[r’|s, a]: distribution over
rewards returned ' =7(s, a).

Model

B State observed at time t: s; € S.

action

gﬁwimnment

reward

M Action taken at time t: a; € A.

B State reached s;i1=0(s¢, ar).

B Reward received: 1111 =7(s¢, a:).

at/Tt+1 at+1/7“t+2
..... - - P

MDPs - Properties

B Finite MDPs: A and S finite sets.
B Finite horizon when 7T < .

B Reward (s, a) : often deterministic function.

Example - Robot Picking up Balls

Policy

® Definition: a policy is a mapping 7: S — A.

B Obijective: find policy m maximizing expected
return.
® finite horizon return: ZtT:_Ol r (s, m(st))-

® infinite horizon return: >, vtr (s¢, 7(s1)) -

B Theorem: there exists an optimal policy from any
start state.

Policy Value

B Definition: the value of a policy mat state s is

® finite horizon:

Ve(s) =E Z r{S¢, T So—s .
t=0 |
® infinite horizon: dlscount factory€|0,1),
e
V.(s) =E thr(st,ﬂ(st)) So = S
t=0

B Problem:find policy m with maximum value for all
states.

Policy Evaluation

| Analysis of policy value:

+00 7
Vz(s) =E ZVtT(St,W(St)) So = S| .

oo

= E[;(S,ﬂ'(s))] +~vE thr(_stﬂ, m(8e4+1)) [0 = S

= Blr(s,m(s)] + v E[Vx(d(s, 7(s)))].
® Bellman equations (system of linear equations):

Vi(s) =E|r(s,m(s)] + vz Pr[s’|s, m(s)| VL (s").

Bellman Equation - Existence and Uniqueness

B Notation:
® transition probability matrix P, =Pr[s’|s, 7(s)].
® value column matrixV ="V,(s).

® expected reward column matrix: R=E[r(s, 7(s)].

B Theorem:for a finite MDP, Bellman’s equation
admits a unique solution given by

Vo=1—-~P)"'R.

Bellman Equation - Existence and Uniqueness

B Proof: Bellman’s equation rewritten as
V=R +~vPV.

® P is a stochastic matrix, thus,
[Plloc = max Y [Poy| = max Y Prfs'|s, n(s)] = 1.
s’ s’

® This implies that ||yP|| = 7<1.The eigenvalues
of P are all less than one and(I —<P) is
invertible.

B Notes: general shortest distance problem (MM, 2002).

Optimal Policy

B Definition: policy 7* with maximal value for all

states s€ S.

® value of 7* (optimal value):
Vs € S, Vi« (s) = max Vi (s).

® optimal state-action value function: expected
return for taking action a at state s and then
following optimal

Q" (s,a) = E|
= E|

bolicy.

|+~ E[V7(0(s,a))

|+~ Z Pr[s’ | s,a]V*(s").

s’'eS

Optimal Values - Bellman Equations

B Property: the following equalities hold:

Vs e S, V*(s) = IgleajcQ (s,a).

| Proof: by definition, for all s,V ™(s) < max Q" (s,a).

® |f for some swe hadV™(s) <mea§ Q*(s,a), then

maximizing action would define a better policy.

B Thus,

V*(s) = max { E[r(s,a)] +~ Z Pr[s’|s, a]V*(s’)}.

aEA
s'esS

This Lecture

B Markov Decision Processes (MDPs)
® Planning
B | earning

® Multi-armed bandit problem

Known Model

B Setting: environment model known.
® Problem: find optimal policy.

B Algorithms:
® value iteration.
® policy iteration.

® |inear programming.

Value lteration Algorithm

$(V)(s) = max { Elr(s,a)] +~ Z Pr[s’|s, a]V(s’)}.

acA
s'eS
® (V) =max{R, + 7P, V}.

VALUEITERATION(V))
1 V« Vy »>Vgarbitrary value
2 while [V — ®(V)|| > 22 do
3 V — (V)
4 return ®(V)

VI Algorithm - Convergence

B Theorem:for any initial value Vi, the sequence
defined by V,, ;1 =®(V,,)converge toV™,

B Proof: we show that & is y-contracting for || - ||
—>» existence and uniqueness of fixed point for ®.

® for anys € S, let a™(s) be the maximizing action
defining ®(V)(s).Then,for s € S and any U,

<7 > Prls'ls,a*($)]|V = Uloe = 4[|V = Ul|ew.

Complexity and Optimality

m Complexity: convergence in O(log 1) . Observe that
[Vit1 = Vallo <9[Vi = Viifleo <" ®(Vo) — Vol

(1 —)e

Thus, 7"||®(Vo) — Volleo < .

in:O(log%).

B ¢-Optimality: let V,, 1 be the value returned. Then,

V' = Visilloo < IV = @(Vig1)lloo + 12(Vit1) = Vgl

< VHV* — Vn+1Hoo - 7HVn+1 — VnHoo-
Thus,

* 8
HV o V?H—lHoo < EHVn—l—l — VnHoo < €.

VI Algorithm - Example

V. 1(1) = max {2 + v(§Vn(1) + 1Vn(z)) 2 Wn(z)}

4 4
Vi1 (2) = max {3+ 9Va(1),2+1Va(2) }

For V(1) = —1,Vo(2) = 1,7y = 1/2,V (1) = V1 (2)
But,V*(1) = 14/3, V*(2) = 16/3.

Policy Iteration Algorithm

POLICYITERATION (7))
1 m™«my ©Dm arbitrary policy

7'« NIL

while (7 # 7’) do
V «— V. b policy evaluation: solve (I — yP,)V = R,..
7 — T
m «— argmax_{R, +vP.V} > greedy policy improvement.

return 7

N O O i W N

Pl Algorithm - Convergence

B Theorem:let(V,).cn be the sequence of policy
values computed by the algorithm, then,

Vn S Vn—l—l S V*

B Proof:letn,+1 be the policy improvement at the nth
iteration, then, by definition,

an_|_1 + /YPWn_HVn Z Rﬂ'n + /YPﬂnVn — Vn
® therefore, R, ., > (I—~P,, . ,)Va.

® note that (I — yP,,)" ' preserves ordering:
X > 0= (I - /VPWn+1)_1X — ZZCDZO(’YPWwA-l)kX > 0.

e thus,V,11 = I—-7P,. .,) 'R >V,.

Tn+1 —

Notes

B Two consecutive policy values can be equal only at
last iteration.

® The total number of possible policies is |A|'°!, thus,

this is the maximal possible number of iterations.

® best upper bound known O(%).

Pl Algorithm - Example

a/[3/4, 2]

a/[1/4, 2]

VI and Pl Algorithms - Comparison

B Theorem:let(U,),cn be the sequence of policy
values generated by the VI algorithm, and (V,,),en
the one generated by the Pl algorithm. If Uy =V,
then,

vneN, U, <V, <V~™

B Proof: we first show that & is monotonic. Let U
and 'V be such that U < Vand let = be the policy
such that #(U) = R, + ~vP,U.Then,

®(U) < R, + 9P,V < max{R, + 1P, V} = (V).

VI and Pl Algorithms - Comparison

® The proof is by induction on n.Assume U,, <V,
then, by the monotonicity of @,

Upi1 = ®(U,) < (V,,) = max{Ry + 1PV},
® |etm,+1 be the maximizing policy:
Tne1 = argmax{ R, + YP.V,}.
® Then, i
®(V,) =R, +7Pr,.. Vo <Ry ., + 7P, . Vi1 = Vi1

Notes

® The Pl algorithm converges in a smaller number of
iterations than the VI algorithm due to the optimal

policy.

B But, each iteration of the Pl algorithm requires
computing a policy value, i.e., solving a system of
linear equations, which is more expensive to
compute that an iteration of the VI algorithm.

Primal Linear Program

| | P formulation: choose a(s) >0, with) __ a(s)=1.

rr{;_n Z a(s)V (s)

sesS

subject to Vs € S,Va € A,V (s) > E[r(s,a)] +~ Z Pr[s’|s, a]V(s").
s'esS

B Parameters:
® number rows:|S||A].

® number of columns:|S].

Dual Linear Program

A [P formulation:

max Z Elr(s,a)] x(s,a)

X
se€S,acA

subject to Vs € S, Z r(s',a) = a(s’) + ’YZPI‘[S/|S, al z(s', a)

acA seS,aeA
Vs € S,Va € A, x(s,a) > 0.

B Parameters: more favorable number of rows.

® number rows:|S]|.

® number of columns: |S||A] .

This Lecture

B Markov Decision Processes (MDPs)
® Planning
B | earning

® Multi-armed bandit problem

Problem

B Unknown model:

® transition and reward probabilities not known.

® realistic scenario in many practical problems, e.g.,
robot control.

B Training information: sequence of immediate
rewards based on actions taken.

B [earning approches:
® model-free: learn policy directly.

® model-based: learn model, use it to learn policy.

Problem

B How do we estimate reward and transition
probabilities?

® use equations derived for policy value and Q-
functions.

® but, equations given in terms of some
expectations.

® —> instance of a stochastic approximation
problem.

Stochastic Approximation

® Problem: find solution of x=H(x) with xcR" while
® [(x) cannot be computed, e.g., H not accessible;
® i.i.d.sample of noisy observations H (x;) +w,
available, i € [1, m], with E[w]|=0.
® |dea:algorithm based on iterative technique:
Xi11 = (1 — ap)X¢ + o |[H (Xy) + Wi
= Xt + ¢ | H(x:) + Wy — X¢].

® more generally x;11 = x¢ + a D(x¢, wy).

Mean Estimation

B Theorem:Let X be a random variable taking values
in[0, 1]and let z, ..., z,, be i.i.d. values of X. Define
the sequence(tm)men by

/Lm+1:(1—04m),um—|—@m$m with Ho = ZIq-

Then, for a,,, €[0, 1], WichOzm =400 andZoz,,Qn < 400,
m>0 m>0

Lo, gE[X]

Proof

® Proof: By the independence assumption for m>0,
Var[pmi1] = (1 — apn) Var|pm] + o2 Var[z,,]
< (1 =) Var[u] + a2,
® We have o, —~0since)_ - a? <400,

® | et e>0 and suppose there exists NV € Nsuch that
for all m> N,Var[u,,] >¢. Then, for m> N,

Var|im+1] < Var|im] — ame + a2,

which implies Var|u,,+n] < Var[un] — eZ?j o + Z?_ﬂf,v %,
— — OO Wflgn mM—> 00

contradicting Var|u,,+n]|>0.

Mean Estimation

® Thus, for all N e Nthere exists mg> Nsuch that

Var|pm,] <e. Choose N large enough so that
Vm> N, a,, <e. Then,

Var|tmg 1] < (1 — Q) €+ € ,=€.

® Therefore, pm <€ for allm>mg (L2 convergence).

Notes

B special case: ;==

m

® Strong law of large numbers.

® Connection with stochastic approximation.

TD(0) Algorithm
B |dea: recall Bellman’s linear equations giving V/
Vie(s) =E[r(s,m(s)] +~ Z Pr[s’|s, m(s)|Vy (s')

= E (s, m(s)) +Va(s)|s].

B Algorithm: temporal difference (TD).

® sample new state s’

® update: a depends on number of visits of s.
V(s) — (1 —a)V(s)+alr(s,m(s)) + 7V (s)]
=V(s) +alr(s,m(s)) + 7V (s') = V(s)].

temporal difference of V' values

TD(0) Algorithm

TD(0)()
V «— Vg > initialization.
for t — 0 to T do
$ «— SELECTSTATE()
for each step of epoch t do
r’ «— REWARD(s, 7(s))
s «— NEXTSTATE(W,S)
Vi(s) = (1=a)V(s) +alr' +~V(s')]
s« s
return V

O© 00 J O O i W N

Q-Learning Algorithm

B |dea:assume deterministic rewards.

Q*(s,a) =E[r(s,a)] +v Y Pr[s’ | s,a]V*(s)

s’'eS

= Elr(s,a) + ymax Q"(s', a)]

B Algorithm: a € |0,1] depends on number of visits.
® sample new state s’

® update:

Q(s,a) — aQ(s,a) + (1 —a)[r(s,a) + ymaxQ(s', a)].

Q-Learning Algorithm

(Watkins, 1989;Watkins and Dayan 1992)

Q-LEARNING(7)
1 @« @y >initialization, e.g., Qg = 0.
2 fort«+—0to1 do

3 $ «— SELECTSTATE()

4 for each step of epoch t do

5 a < SELECTACTION(7,s) > policy 7w derived from @), e.g., e-greedy.

6 r’ «— REWARD(s, a)

7 s’ « NEXTSTATE(s, a)

8 Q(s,a) — Q(s,a) + a|r’ + ymaxy Q(s',a") — Q(s,a)]

9 s« s

0

10 return ()

Notes

B Can be viewed as a stochastic formulation of the
value iteration algorithm.

B Convergence for any policy so long as states and
actions visited infinitely often.

B How to choose the action at each iteration!?
Maximize reward?! Explore other actions?! Q-
learning is an off-policy method: no control over
the policy.

Policies

B Epsilon-greedy strategy:
® with probabilityl—¢ greedy action from s;

® with probability e random action.

B Epoch-dependent strategy (Boltzmann exploration):

Q(s,a)
e 7t
pt(a’S,Q) — Q(s,a’) ?

Za’EA e

® 7, — 0:greedy selection.

® larger 7 : random action.

Convergence of Q-Learning

B Theorem: consider a finite MDP.Assume that for
all se Sand a€ A, >~ g (s, a) = 00,37 aj(s,a) < o0
with a;(s,a) €0, 1]. Then, the Q-learning algorithm
converges to the optimal value @™ (with probability

one).

® note: the conditions on ax(s, a)impose that each
state-action pair is visited infinitely many times.

SARSA: On-Policy Algorithm

SARSA ()
1 @+« @y ©>initialization, e.g., Qg = 0.
2 fort+—0toT do
$ «— SELECTSTATE()
a < SELECTACTION(7(Q),s)> policy m derived from @, e.g., e-greedy.
for each step of epoch ¢t do
r’ < REWARD(s, a)
s’ « NEXTSTATE(s, a)
a' «— SELECTACTION(7(Q),s")> policy 7 derived from @, e.g., e-greedy.
9 Q(s,a) — Q(s,a) + ai(s,a) ['r’ +vQ(s",a’") — Q(s, a)}
10 s«— s
11 a«— a
12 return Q)

O O O i W

Notes

B Differences with Q-learning:
® two states: current and next states.
® maximum reward for next state not used for
next state, instead new action.

B SARSA: name derived from sequence of updates.

TD(A) Algorithm

B |dea:
® TD(0) or Q-learning on

® use multiple steps aheac

y use immediate reward.

instead, for n steps:

Ry = re1 97042+ " egn + "V (5640)
Vi(s) = V(s) +a (i = V(s)).

® TD(A) uses R} = (1 —)
B Algorithm:
Vi(s) —V(s)+

> n=o A" Ry

a (R} = V(s)).

TD(A) Algorithm

TD(A)()
1 V « V> initialization.
2 e—0
3 fort«— 0to1 do
4 S «— SELECTSTATE()
5 for each step of epoch ¢t do
6 s’ «— NEXTSTATE(T, s)
7 d «—r(s,m(s)) + AV (s') = V(s)
8 e(s) « Xe(s) +1

9 for v € S do
10 if u # s then
11 e(u) < ye(u)
12 Vu) «— V(u) 4+ ade(u)
13 s« s

14 return V

TD-Gammon

® [arge state space or costly actions: use regression algorithm
to estimate Q for unseen values.

(Tesauro, 1995)

® Backgammon:
® Jlarge number of positions: 30 pieces, 24-26 locations,
® large number of moves.

® TD-Gammon: used neural networks.
® non-linear form of TD(A),1.5M games played,

® almost as good as world-class humans (master level).

13 14 15 16 17 18 19 20 21 22 23 24

13

F. L | | .
SIS
] -

s 11

)

12 11 10 9 & 7

This Lecture

® Markov Decision Processes (MDPs)
® Planning
B [earning

B Multi-armed bandit problem

Multi-Armed Bandit Problem

(Robbins, 1952)

® Problem: gambler must decide which arm of a V-
slot machine to pull to maximize his total reward
in a series of trials.

® stochastic setting: N lever reward distributions.

® adversarial setting: reward selected by adversary
aware of all the past.

Applications

® Clinical trials.
B Adaptive routing.
B Ads placement on pages.

B Games.

Multi-Armed Bandit Game

® Fort=1to Tdo
® adversary determines outcomey; € Y.

® player selects probability distribution p; and pulls
lever I, €{1,...,N}, Iy ~p;.

® player incurs loss L(1;, y;)(adversary is informed
of p; and I,.

B Obijective: minimize regret

Regret(T Z LI, y:)

ooooo

Notes

Player is informed only of the loss (or reward)
corresponding to his own action.

Adversary knows past but not action selected.

Stochastic setting: loss (L(1,4:), ..., L(N,y:))drawn
according to some distributionD = Dy ® --- ® Dy.
Regret definition modified by taking expectations.

Exploration/Exploitation trade-off: playing the best
arm found so far versus seeking to find an arm
with a better payoff.

Notes

| Equivalent views:
® special case of learning with partial information.
® one-state MDP learning problem.

B Simple strategy: €-greedy: play arm with best

empirical reward with probability 1 —¢;, random
arm with probability €: .

Exponentially VWeighted Average

® Algorithm: Exp3, defined for n,v>0by
exp(—nY1lis) A
Siyexp (=nXiylie) N

withVi € [1,N], [;, = 28wy,

pIt,t

pit = (1—7)

B Guarantee: expected regret of

O(v/NTlogN).

Exponentially VWeighted Average

B Proof: similar to the one for the Exponentially
Weighted Average with the additional observation
that:

Ell;] = Zij\; Pi,tL(It’yt) lr,— = L(2,ys).

pIt,t

References

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 2 vols. Belmont, MA:
Athena Scientific, 2007.

Mehryar Mohri. Semiring Frameworks and Algorithms for Shortest-Distance Problems.
Journal of Automata, Languages and Combinatorics, 7(3):321-350, 2002.

Martin L. Puterman Markov decision processes: discrete stochastic dynamic programming.
Wiley-Interscience, New York, 1994.

Robbins, H. (1952), "Some aspects of the sequential design of experiments”, Bulletin of the
American Mathematical Society 58 (5): 527-535.

Sutton, Richard S., and Barto,Andrew G. Reinforcement Learning:An Introduction. MIT Press,
1998.

References

Gerald Tesauro. Temporal Difference Learning and TD-Gammon. Communications of the ACM
38 (3), 1995.

Watkins, Christopher J. C. H. Learning from Delayed Rewards. Ph.D. thesis, Cambridge
University, 1989.

Christopher J. C. H.Watkins and Peter Dayan. Q-learning. Machine Learning,Vol. 8, No. 3-4,
1992.

Appendix

Stochastic Approximation

® Problem: find solution of x=H(x) with xcR" while
® [(x) cannot be computed, e.g., H not accessible;
® i.i.d.sample of noisy observations H (x;) +w,
available, i € [1, m], with E[w]|=0.
® |dea:algorithm based on iterative technique:
Xi11 = (1 — ap)X¢ + o |[H (Xy) + Wi
= Xt + ¢ | H(x:) + Wy — X¢].

® more generally x;11 = x¢ + a D(x¢, wy).

Supermartingale Convergence

® Theorem:let Xt,Y:, Z: be non-negative random
variables such that)",”, Y; <oo. If the following
condition holds: E [XtH]]-}} <X+Y;—Z; , then,

® X, converges to a limit (with probability one).
o Z:ﬁ)i() Zt < Q.

Convergence Analysis

® Convergence of x;41 = x; + o D(x¢, W), with
history F; defined by

Fi = {(Xt’)t’§t7 (@t’)t’gta (Wt’)t’<t}-

B Theorem:let ¥: x — %||x — x*||3 for some x* and
assume that

o 3K, Ky: E [HD(Xt,wt)Hg }ft} < K+ Ky U(x,);
e dc: VU (x4)'E [D(Xt,Wt ‘ft} < —cU(xy);
ap>0,>"7 o =00, 0 af < 00.

Then, x; = x*.

Convergence Analysis

B Proof:since V¥ is a quadratic function,

\IJ(XH_l) = \IJ(Xt) —|—V\IJ(X,5)T(XH_1 —Xt) + %(Xt—l—l —Xt)TVQ\IJ(Xt)(XH_l —Xt).

B Thus, :
E {\p(xt—l—lﬂft} = W(x;) + OétV‘I’(Xt)T E {D(Xtawt)‘ft} + O;_t E {||D(Xtawt)|’2|ft}

2
< W(xy) — e (xz) + %(Kl + KU (xy)) non-neg. for

large t
a’K
= () + 5=

B By the supermartingale convergence theorem, ¥ (x;)

00 a; Ko
converges and > .° | (atc R)\P(Xt) < 00.

B Since a;>0,> " oy =00,y .0 ai < 0o, U(xs)must
converge to 0.

