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Convexity

Definition:            is said to be convex if for any 
two points            the segment        lies in   :

Definition: let    be a convex set. A function          
is said to be convex if for all            and            ,
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X�RN

x, y�X [x, y] X

{�x + (1� �)y, 0 � � � 1} � X.

f : X�RX
x, y�X �� [0, 1]

f(�x + (1 � �)y) � �f(x) + (1� �)f(y).

  is said to be concave when     is convex.f �f

With a strict inequality,   is said to be strictly convex.f
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Theorem: let    be a differentiable function. Then,    
is convex iff            is convex and

Theorem: let   be a twice differentiable function. 
Then,    is convex iff its Hessian is positive semi-
definite:

Properties of Convex Functions

f f

∀x, y ∈ dom(f), f(y) − f(x) ≥ ∇f(x) · (y − x).

f(y)

f(x) + ∇f(x)·(y − x).

(x, f(x))

f
f

∀x ∈ dom(f), ∇2f(x) ≽ 0.

dom(f)
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Constrained Optimization Problem

Problem: Let           and                 ,            . A
constrained optimization problem has the form:

Definition: The Lagrange function or Lagrangian 
associated to this problem is the function defined 
by:
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X�RN f, gi : X�R i� [1, m]

   s are called Lagrange or dual variables.�i

min
x�X

f(x)

subject to: gi(x) � 0, i � [1, m].

�x � X, �� � 0, L(x, �) = f(x) +
m�

i=1

�igi(x).
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Sufficient Condition

Theorem: Let P be a constrained optimization 
problem over           . If            is a saddle point, 
that is 

Proof:  By the first inequality,

• In view of that, the second inequality gives

(Lagrange, 1797)
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X =RN

then it is a solution of P.

(x�, ��)
�x � RN , �� � 0, L(x�, �) � L(x�, ��) � L(x, ��),

�x, L(x�, ��) � L(x, ��)� �x, f(x�) � f(x) + �� · g(x).

Thus, for all   such that           ,

�� � 0, L(x�, �) � L(x�, ��)� �� � 0, � · g(x�) � �� · g(x�)
(use �� +� then �� 0)� g(x�) � 0 ��� · g(x�) = 0.

g(x)�0 f(x�) � f(x).x



pageMehryar Mohri - Foundations of Machine Learning

Constraint Qualification

Definition: Assume that              Then, the following 
is the strong constraint qualification or Slater’s 
condition:

Definition: Assume that              Then, the following 
is the weak constraint qualification or Slater’s 
condition:
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intX �=�.

�x � intX: g(x) < 0.

intX �=�.

�x � intX: �i � [1, m],
�
gi(x) < 0

�
�

�
gi(x) = 0 � gi a�ne

�
.
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Necessary Conditions

Theorem: Assume that   and    ,            , are
convex functions and that Slater’s condition holds. 
If    is a solution of the constrained optimization 
problem, then there exists        such that        is a
saddle point of the Lagrangian.

Theorem: Assume that   and    ,            , are
convex differentiable functions and that the weak 
Slater’s condition holds. If    is a solution of the 
constrained optimization problem, then there 
exists        such that        is a saddle point of the
Lagrangian.
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f gi i� [1, m]

(x, �)��0
x

f gi i� [1, m]

(x, �)��0

x
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Kuhn-Tucker’s Theorem

Theorem: Assume that                 ,             are 
convex and differentiable and that the constraints 
are qualified. Then   is a solution of the constrained 
program iff there exist        such that:

Note: Last two conditions equivalent to

(Karush 1939; Kuhn-Tucker, 1951)

�
KKT 

conditions
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f, gi : X�R i� [1, m]

x
��0

�
g(x) � 0

�
�

�
�i � [1, m], �̄igi(x) = 0� �� �
complementary conditions

�
.

�xL(x, �) = �xf(x) + � ·�xg(x) = 0

��L(x, �) = g(x) � 0

� · g(x) =
m�

i=1

�igi(x) = 0 .
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• Since the constraints are qualified, if   is solution,
then there exists    such that         is a saddle
point. In that case, the three conditions are
verified (for the 3rd condition see proof of
sufficient condition slide).

• Conversely, assume that the conditions are
verified. Then, for any   such that            ,
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x
(x, �)�

x g(x)<0

f(x)� f(x) � �xf(x) · (x� x) (convexity of f)

= �
m�

i=1

�i�xgi(x) · (x� x) (first condition)

� �
m�

i=1

�i[gi(x)� gi(x)] (convexity of gis)

= �
m�

i=1

�igi(x) � 0, (third condition)
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Primal and Dual Problems

Primal problem:

Dual problem:

Equivalent problems when constraints qualified.
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min
x�X

f(x)

subject to: g(x) � 0.

max
�

inf
x�X

L(x, �)

subject to: � � 0.


