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Convex Optimization



Convexity

B Definition: X CR" is said to be convex if for any
two points z,y € X the segment|z,y] lies in X:

{far+(1—-—a)y,0<a <1} CX.

B Definition: let X be a convex set.A functionf: X —R
is said to be convex if for all z,y€ X and a €0, 1],

flazx+ (1 —a)y) < af(z) + (1 - a)f(y).
With a strict inequality, fis said to be strictly convex.

fis said

to be concave when —fis convex.
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Properties of Convex Functions

® Theorem:let f be a differentiable function.Then, f
is convex iff dom(f) is convex and

vz,y € dom(f), f(y) — f(z) = Vf(z) (y—x).

- e f@)
f(@) +Vi(z)(y — ).
® Theorem:let f be a twice differentiable function.
Then, f is convex iff its Hessian is positive semi-

definite:
vz € dom(f), V2f(z) = 0.



Constrained Optimization Problem

B Problem:LetX CR"andf,g;: X —R,ic[l,m].A
constrained optimization problem has the form:

min f(x)

xeX
subject to: g;(x) < 0,7 € [1,m].

B Definition: The Lagrange function or Lagrangian
associated to this problem is the function defined

by:
\V/XEX\V/(X>OL(XO£ +Z&zgz

a;s are called Lagrange or dual varlables



Sufficient Condition

(Lagrange, 1797)

B Theorem:Let P be a constrained optimization
problem over X =R¥ . If (x*, a*)is a saddle point,
that is vx € RY Va > 0, L(x*, o) < L(x*,a*) < L(x, a*),
then it is a solution of P.

® Proof: By the first inequality,

Va> 0, L(x",a) < L(x",a")=Va>0,a-g(x") <a” - g(x")
(use @ — 400 then @ — 0) = g(x") <0Aa™ - g(x™) = 0.
® |n view of that, the second inequality gives

Vx, L(x*, ") < L(x,a™) = Vx, f(x") < f(x) + a” - g(x).

Thus, for all z such thatg(z) <0,|f(x*) < f(x).




Constraint Qualification

® Definition: Assume that int X #(). Then, the following
is the strong constraint qualification or Slater’s
condition:

1% € intX: g(X) < 0.

® Definition: Assume that int X #(.Then, the following
is the weak constraint qualification or Slater’s
condition:

dX € intX: Vi € [1,77”&], (g@-(i) < O) V (gi(i) =0 A gi afﬁne).



Necessary Conditions

B Theorem:Assume that fand g;,ic[1, m), are
convex functions and that Slater’s condition holds.
If xis a solution of the constrained optimization
problem, then there exists a>0 such that (x,a)is a

saddle point of the Lagrangian.

B Theorem:Assume that fandyg; ,ic
conveX differentiable functions anc
Slater’s condition holds. If x is a so

1, m], are

that the weak
ution of the

constrained optimization problem, then there
exists a>0 such that (x,a)is a saddle point of the

Lagrangian.



Kuhn-Tucker’s Theorem
(Karush 1939; Kuhn-Tucker, 1951)
B Theorem:Assume that f,g;: X =R, i€[1, m] are
convex and differentiable and that the constraints
are qualified. ThenXis a solution of the constrained
program iff there exist @>0 such that:

VxL(X, &) = Vi f(X) + @ - Vxg(X) =0
Val(X, @) = g(X) <0 KKT
a-g(X) =) @gi(x)=0.
1=1
B Note: Last two conditions equivalent to

(g(i) < O) A (Yz c [1,m|, @;g;(X) = 9)
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® Since the constraints are qualified, if X is solution,
then there exists a such that (X, @) is a saddle
point. In that case, the three conditions are
verified (for the 3rd condition see proof of
sufficient condition slide).

® Conversely, assume that the conditions are
verified. Then, for any xsuch that ¢g(x) <0,

f(x)— f(X) > Vi f(X) - (x —X) (convexity of f)
=, a;Vygi(X) - (x —X) (first condition)
> — Zﬁi (g:(x) — g:(X)] (convexity of g;s)

= — Zai gi(x) >0, (third condition)



Primal and Dual Problems

® Primal problem:

min - f(x)

subject to: g(x) < 0.

B Dual problem:

max inf L(x,«)
a xeX

subject to: a > 0.

Equivalent problems when constraints qualified.



