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Motivation

Real-world problems often have multiple classes: 
text, speech, image, biological sequences.

Algorithms studied so far: designed for binary 
classification problems.

How do we design multi-class classification 
algorithms? 

• can the algorithms used for binary classification 
be generalized to multi-class classification?

• can we reduce multi-class classification to binary 
classification?
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Multi-Class Classification Problem

Training data: sample drawn i.i.d. from set    
according to some distribution   ,

• mono-label case:                  .

• multi-label case:                    .

Problem: find classifier              in    with small 
generalization error,

• mono-label case:                                 .

• multi-label case:                                               .

H

X
D

Card(Y )=k

Y ={�1, +1}k

h : X�Y

S =((x1, y1), . . . , (xm, ym))�X�Y,

R(h)=Ex⇠D

⇥
1
k

Pk
l=1 1[h(x)]l 6=[f(x)]l

⇤
R(h)=Ex⇠D[1h(x) 6=f(x)]
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Notes

In most tasks considered, number of classes 

For   large, problem often not treated as a multi-
class classification problem (ranking or density 
estimation, e.g., automatic speech recognition).

Computational efficiency issues arise for larger  s.

In general, classes not balanced.
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k�100.
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Multi-Class Classification - Margin

Hypothesis set   :

• functions                  .

• label returned:                           .

Margin:

•                                              .

• error:                                   .

• empirical margin loss:
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H

x �� argmax
y�Y

h(x, y)

h: X�Y �R

�R�(h) =
1
m

m�

i=1

��(�h(x, y)).

�h(x, y) = h(x, y)�max
y� �=y

h(x, y�)

1⇢h(x,y)0  �⇢(⇢h(x, y))
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Multi-Class Margin Bound

Theorem: let                with                    . Fix       . 
Then, for any       , with probability at least      , the 
following multi-class classification bound holds for 
all        :

6

H � RX�Y Y = {1, . . . , k} �>0
�>0 1��

h�H

with �1(H) = {x �� h(x, y) : y � Y, h � H}.

(MM et al. 2012; Kuznetsov, MM, and Syed, 2014)

R(h) � �R�(h) +
4k

�
Rm(�1(H)) +

�
log 1

�

2m
,
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Kernel Based Hypotheses

Hypothesis set        :

•    feature mapping associated to PDS kernel   .

• functions                          ,                    .

• label returned:                                  .

• for any        ,
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(x, y) �� wy · �(x) y � {1, . . . , k}
x �� argmax

y�{1,...,k}
wy · �(x)

HK,p

� K

p � 1

HK,p = {(x, y) � X�[1, k] �� wy ·�(x) : W = (w1, . . . ,wk)�, �W�H,p � �}.
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Multi-Class Margin Bound - Kernels

Theorem: let                    be a PDS kernel and 
let                be a feature mapping associated to  . 
Fix       . Then, for any       , with probability at 
least      , the following multiclass bound holds for 
all             :
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K: X�X�R
� : X � H K
�>0 �>0

1��

(MM et al. 2012)

R(h) � �R�(h) + 4k

�
r2�2

�2m
+

�
log 1

�

2m
,

where r2 = sup
x�X

K(x, x).

h � HK,p
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Approaches

Single classifier:

• Multi-class SVMs.

• AdaBoost.MH.

• Conditional Maxent.

• Decision trees.

Combination of binary classifiers:

• One-vs-all.

• One-vs-one.

• Error-correcting codes.
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Multi-Class SVMs

Optimization problem:

Decision function:

(Weston and Watkins, 1999; Crammer and Singer, 2001)

h : x ��argmax
l�Y

(wl · x).

min
w,�

1
2

k�

l=1

�wl�2 + C
m�

i=1

�i

subject to: wyi · xi + �yi,l � wl · xi + 1� �i

(i, l)� [1, m]�Y.
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Directly based on generalization bounds.

Comparison with (Weston and Watkins, 1999): single slack 
variable per point, maximum of slack variables 
(penalty for worst class):

PDS kernel instead of inner product

Optimization: complex constraints,     -size problem.

• specific solution based on decomposition into   
disjoint sets of constraints (Crammer and Singer, 2001).

Notes

mk

m

k�

l=1

�il �
kmax

l=1
�il.
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Dual Formulation

Optimization problem:      th row of matrix        . 

Decision function:
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h(x) = kargmax
l=1

� m�

i=1

�il(xi · x)
�
.

�i i ��Rm�k

max
�=[�ij ]

m�

i=1

�i · eyi �
1
2

m�

i=1

(�i · �j)(xi · xj)

subject to: �i � [1, m], (0 � �iyi � C) � (�j �= yi, �ij � 0) � (�i · 1 = 0).
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AdaBoost

Training data (multi-label case):

Reduction to binary classification:

• each example leads to    binary examples: 

• apply AdaBoost to the resulting problem.

• choice of     .

Computational cost:      distribution updates at 
each round.

(Schapire and Singer, 2000)

(x1, y1), . . . , (xm, ym)�X�{�1, 1}k.

(xi, yi)� ((xi, 1), yi[1]), . . . , ((xi, k), yi[k]), i � [1, m].

�t

k

mk
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AdaBoost.MH

14

AdaBoost.MH(S=((x1, y1), . . . , (xm, ym)))
1 for i� 1 to m do
2 for l� 1 to k do
3 D1(i, l)� 1

mk
4 for t� 1 to T do
5 ht � base classifier in H with small error �t =PrDt [ht(xi, l) �=yi[l]]
6 �t � choose � to minimize Zt

7 Zt �
�

i,l Dt(i, l) exp(��tyi[l]ht(xi, l))
8 for i� 1 to m do
9 for l � 1 to k do

10 Dt+1(i, l)� Dt(i,l) exp(��tyi[l]ht(xi,l))
Zt

11 fT �
�T

t=1 �tht

12 return hT = sgn(fT )

H�({�1, +1}k)(X�Y ).
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Bound on Empirical Error

Theorem: The empirical error of the classifier 
output by AdaBoost.MH verifies:

Proof: similar to the proof for AdaBoost.

Choice of    : 

• for                         , as for AdaBoost,

• for                     , same choice: minimize upper 
bound.

• other cases: numerical/approximation method.
15

�R(h) �
T�

t=1

Zt.

�t = 1
2 log 1��t

�t
.

�t

H�({�1, +1}k)X�Y

H�([�1, 1]k)X�Y
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Notes

Objective function:

All comments and analysis given for AdaBoost 
apply here.
Alternative: Adaboost.MR, which coincides with a 
special case of RankBoost (ranking lecture).
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F (�) =
m�

i=1

k�

l=1

e�yi[l]fn(xi,l) =
m�

i=1

k�

l=1

e�yi[l]
Pn

t=1 �tht(xi,l).
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Decision Trees

X1 < a1

X1 < a2 X2 < a3

X2 < a4 R3 R4 R5

R1 R2
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X1

X2

a4

a2 a1

a3

R2

R1

R3

R5

R4
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Different Types of Questions

Decision trees

•                               : categorical questions.

•         : continuous variables.

Binary space partition (BSP) trees:

•                     : partitioning with convex 
polyhedral regions.

Sphere trees:

•                   : partitioning with pieces of spheres.

18

X � {blue, white, red}
X�a

�n
i=1 �iXi�a

||X � a0||�a
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Hypotheses

In each region    , 

• classification: majority vote - ties broken 
arbitrarily,

• regression: average value,

Form of hypotheses:

19

Rt

�yt = argmax
y�Y

|{xi � Rt : i � [1, m], yi = y}|.

�yt =
1

|S �Rt|
�

xi�Rt
i�[1,m]

yi.

h : x ��
�

t

�yt1x�Rt .
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Training

Problem: general problem of determining partition 
with minimum empirical error is NP-hard.

Heuristics: greedy algorithm.

• for all             ,        , 

20

Decision-Trees(S =((x1, y1), . . . , (xm, ym)))
1 P � {S} � initial partition
2 for each region R � P such that Pred(R) do
3 (j, �) � argmin(j,�) error(R�(j, �)) + error(R+(j, �))
4 P � P �R � {R�(j, �), R+(j, �)}
5 return P

j� [1, N ] ��R R+(j, �)={xi � R : xi[j]��, i� [1, m]}
R�(j, �)={xi � R : xi[j]<�, i� [1, m]}.
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Splitting/Stopping Criteria

Problem: larger trees overfit training sample.

Conservative splitting: 

• split node only if loss reduced by some fixed 
value       .

• issue: seemingly bad split dominating useful splits.

Grow-then-prune technique (CART):

• grow very large tree,                          .

• prune tree based on:                               ,        
parameter determined by cross-validation.

21

�>0

Pred(R): |R|> |n0|
F (T )= �Loss(T )+�|T | ��0
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Decision Tree Tools

Most commonly used tools for learning decision 
trees:

• CART (classification and regression tree) (Breiman 

et al., 1984).

• C4.5 (Quinlan, 1986, 1993) and C5.0 (RuleQuest 
Research) a commercial system.

Differences: minor between latest versions.

22
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Approaches

Single classifier:

• SVM-type algorithm.

• AdaBoost-type algorithm.

• Conditional Maxent.

• Decision trees.

Combination of binary classifiers:

• One-vs-all.

• One-vs-one.

• Error-correcting codes.
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One-vs-All

Technique: 

• for each class        learn binary classifier               . 

• combine binary classifiers via voting mechanism, 
typically majority vote:

Problem: poor justification (in general).

• calibration: classifier scores not comparable.

• nevertheless: simple and frequently used in 
practice, computational advantages in some cases.

l�Y hl =sgn(fl)

h : x �� argmax
l�Y

fl(x).
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One-vs-One

Technique: 

• for each pair                    learn binary              
classifier                      .                     

• combine binary classifiers via majority vote:

Problem:

• computational: train                binary classifiers.

• overfitting: size of training sample could become 
small for a given pair.

(l, l�)�Y, l �= l�

hll� :X�{0, 1}

h(x) = argmax
l��Y

��{l : hll� (x) = 1}
��.

k(k � 1)/2
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Computational Comparison

O(kBtrain(m)) O(kBtest)

O(k2Btrain(m/k))
(on average)

O(k2
Btest)

Training Testing

One-vs-all

One-vs-one

O(km
α)

O(k2−α
m

α) smaller NSV per B

Time complexity for SVMs, α less than 3.
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Error-Correcting Code Approach

Idea:

• assign   -long binary code word to each class:

• learn binary classifier                    for each 
column.  Example   in class   labeled with      .

• classifier output:                                      ,

 (Dietterich and Bakiri, 1995)

x l

F

M = [Mlj ] � {0, 1}[1,k]�[1,F ].

Mlj

fj: X�{0, 1}

h : x ��argmin
l�Y

dHamming

�
Ml, f(x)

�
.

�
f(x)=

�
f1(x), . . . , fF (x)

��
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8 classes, code-length: 6.

Illustration

1 2 3 4 5 6
1 0 0 0 1 0 0
2 1 0 0 0 0 0
3 0 1 1 0 1 0
4 1 1 0 0 0 0
5 1 1 0 0 1 0
6 0 0 1 1 0 1
7 0 0 1 0 0 0
8 0 1 0 1 0 0

cl
as

se
s

codes

new example    x

f1(x)f2(x)f3(x)f4(x)f5(x)f6(x)

0 1 1 0 1 1
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Error-Correcting Codes - Design

Main ideas:

• independent columns: otherwise no effective 
discrimination.

• distance between rows: if the minimal Hamming 
distance between rows is   , then the multi-class 
can correct         errors.

• columns may correspond to features selected 
for the task.

• one-vs-all and one-vs-one (with ternary codes) 
are special cases.

d�
d�1
2

�
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Extensions

Matrix entries in                :

• examples marked with   disregarded during 
training.

•          one-vs-one becomes also a special case.

Margin loss   : function of         , e.g., hinge loss.

• Hamming loss: 

• Margin loss:

30

 (Allwein et al., 2000)

{�1, 0, +1}
0

L yf(x)

h(x) = argmin
l�{1,...,k}

F�

j=1

1� sgn
�
Mljfj(x)

�

2
.

h(x) = argmin
l�{1,...,k}

F�

j=1

L
�
Mljfj(x)

�
.
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Applications

One-vs-all approach is the most widely used.

No clear empirical evidence of the superiority of 
other approaches (Rifkin and Klautau, 2004).

• except perhaps on small data sets with relatively 
large error rate.

Large structured multi-class problems: often 
treated as ranking problems (see ranking lecture).
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