Foundations of Machine Learning
Multi-Class Classification



Motivation

® Real-world problems often have multiple classes:
text, speech, image, biological sequences.

B Algorithms studied so far: designed for binary
classification problems.

B How do we design multi-class classification
algorithms?

® can the algorithms used for binary classification
be generalized to multi-class classification?

® can we reduce multi-class classification to binary
classification!?



Multi-Class Classification Problem

B Training data: sample drawn i.i.d. from set X
according to some distribution D,

S=((®1,41);- -5 (@m,Ym)) €X XY,
® mono-label case: Card(Y)=k.
® multi-label case:Y ={—1,+1}"
B Problem:find classifier h: X —Y in H with small
generalization error,
® mono-label case: R(h) =E.<p[1hw)2f(2)]-

® multi-label case:R(h)=E,.p |+ Zz L Un(@) 1 ()], -



Notes

B |n most tasks considered, number of classes k< 100.

B Fork large, problem often not treated as a multi-
class classification problem (ranking or density
estimation, e.g., automatic speech recognition).

B Computational efficiency issues arise for largerks.

® |n general, classes not balanced.



Multi-Class Classification - Margin

B Hypothesis set H:
® functionsh: X xY —R.

® |abel returned:z — argmaxh(x,y).
yey

® Margin:
® pu(z,y) = h(z,y) —maxh(z, y').
® error:l,, z.<o < ®o(pn(z,9)).

® empirical margin loss:

ﬁp(h) = % Z q)p([)h(xa Y))-



Multi-Class Margin Bound
(MM et al. 2012; Kuznetsov, MM, and Syed, 2014)
B Theorem:letH C R**YwithY = {1,...,k}. Fixp>0.
Then, for any 6 >0, with probability at least1—4, the
following multi-class classification bound holds for
allhe H:
4k log %

R(h) < R,(h) + ?%m(ﬂl(H)) 1 5

)

with Il (H) ={x — h(z,y): y € Y,h € H}.



Kernel Based Hypotheses

B Hypothesis set Hx ,:
® & feature mapping associated to PDS kernel K.
® functions(z,y) — w, - ®(x),y € {1,...,k}.
® label returned: x — argmax w, - ®(x).

c{l,....,k}
® foranyp > 1, ’

Hg, = {(z,y) € Xx[1,k] — w, - ®(z): W = (w1,..., wi) ', ([Wlm, < A}



Multi-Class Margin Bound - Kernels
(MM et al. 2012)
B Theorem:let K: X x X —R be a PDS kernel and
let®: X — Hbe a feature mapping associated tokK.
Fix p>0.Then, for anyd >0, with probability at
least1— 4, the following multiclass bound holds for
allh € Hg

r2 A2 log %

0’m 2m

R(h) < R,(h) + 4k

2

where r* = sup K(z, ).

reX



Approaches

| Single classifier:
® Multi-class SVMs.
® AdaBoost.MH.
® Conditional Maxent.

® Decision trees.

B Combination of binary classifiers:
® One-vs-all.
® One-vs-one.

® Error-correcting codes.



Multi-Class SVMs

(Weston and Watkins, 1999; Crammer and Singer, 2001)

B Optimization problem°

mm — Z w2 CZfz
i=1

subject to: wy, - X; +0y,1 > W, - X; + 1 =&
(i,0) €[1,m|xY.

B Decision function:

h: x+—argmax (w; - X).
ley



Notes

B Directly based on generalization bounds.

B Comparison with (weston andWatkins, 1999): single slack
variable per point, maximum of slack variables
(penalty for worst class):

k
k
Z &it — pax il
=1 B
® PDS kernel instead of inner product

B Optimization: complex constraints,mk-size problem.

® specific solution based on decomposition intom
disjoint sets of constraints (crammer and Singer, 2001).



Dual Formulation

m Optimization problem: a; ith row of matrixa € R7"**

B Decision function:

h(x) = ar;gfx;ax (zm: i (% - X))

1=1



AdaBoost

B Training data (multi-label case):
(z1,Y1), -y (T, ym) EX x {—1,1}"

B Reduction to binary classification:

(Schapire and Singer, 2000)

® each example leads to k£ binary examples:
(Tiyyi) = (@i, 1), wil1]), - - (@i, k), yilK]), @ € [1,m)].
® apply AdaBoost to the resulting problem.

® choice of a;.

B Computational cost: mkdistribution updates at
each round.



AdaBoost.MH

HC({—1,41}k)xY),

ADABOOST.MH(S=((z1,y1),- -+ (T, Ym)))

1 fori+<1tomdo
for [ — 1 to k do
D1 (Z, l) < #
for t — 1 to T do
h; <« base classifier in H with small error ¢, =Prp, |ht(x;,1) #y;[l]]
oy < choose > to minimize Z;
Lt Zi,z Dy(1,1) exp(—auy;[l|hi(xi, 1))
for i <— 1 to m do

for [ — 1 to k do
Dt-l-l(i) l) < Dt(’L,l) exp(_atyi [l]ht(xwl))

Z
JT Zle ahy
12 return hy = sgn(fr)
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Bound on Empirical Error

B Theorem:The empirical error of the classifier
output by AdaBoost.MH verifies:

T
R(h) <] 2.
t=1
B Proof: similar to the proof for AdaBoost.

B Choice of ou:
® forH C({-1,+1}")**]as for AdaBoost, a; =1 log :==.

€t

e forH C([-1,1]%)**}same choice: minimize upper
bound.

® other cases: numerical/approximation method.



Notes

B Obijective function:

F(Oé) — Srn‘ Sk‘ e Yi U] fr(xi,l) Spm; Sk‘ e—yf,;[l] >oiq achi(x;,l) .

1=1 [=1 1=1 [=1

B All comments and analysis given for AdaBoost
apply here.

® Alternative: Adaboost.MR, which coincides with a
special case of RankBoost (ranking lecture).



Decision Trees




Different Types of Questions

B Decision trees
® X € {blue, white, red}: categorical questions.

e X <a:continuous variables.

® Binary space partition (BSP) trees:

e >  «a;X;<a:partitioning with convex
bolyhedral regions.

® Sphere trees:

® ||X — ao|| <a: partitioning with pieces of spheres.



Hypotheses

B |n each region R;,

® classification: majority vote - ties broken
arbitrarily,

yr = argmax [{x; € Ry: i € [1,m],y; =y}
Yyey

® regression: average value,

AN

yt ‘SmRt‘ Z y’l,

zE[l m]

® Form of hypotheses:
h: x— Z@\tleRt‘
t



Training

® Problem: general problem of determining partition
with minimum empirical error is NP-hard.

B Heuristics: greedy algorithm.

® forallje[l, N],0€R, R (j,0)
R™(5,0)

{x; € R: z;|j]|>0,1€|1,m]}
{x; € R: x;|5]<0,1€[1,m]}.
DECISION-TREES(S = ((21, Y1), - - -, (T, Ym)))

1 P« {S} b>initial partition

2 for each region R € P such that Pred(R) do

3 (J,0) « argmin; ) error(R~ (7, 0)) + error(R™ (4, 0))
4 P+« P—-RU{R (j,0),R*(5,0)}
5

return P



Splitting/Stopping Criteria

B Problem: larger trees overfit training sample.

B Conservative splitting:

® split node only if loss reduced by some fixed
value n>0.

® issue: seemingly bad split dominating useful splits.

B Grow-then-prune technique (CART):
® grow very large tree, Pred(R): |R|>|ng|.

® prune tree based on:F(T)=Loss(T)+a|T|,a>0
parameter determined by cross-validation.



Decision Tree Tools
B Most commonly used tools for learning decision
trees:

® CART (classification and regression tree) (Breiman
et al., 1984).

® C4.5 (Quinlan, 1986,1993) and C5.0 (RuleQuest
Research) a commercial system.

B Differences: minor between latest versions.



Approaches

| Single classifier:
® SVM-type algorithm.
® AdaBoost-type algorithm.
® Conditional Maxent.

® Decision trees.

B Combination of binary classifiers:
® One-vs-all.
® One-vs-one.

® Error-correcting codes.



One-vs-All

B Technique:
® for each class /€Y learn binary classifierh; =sgn(f;).

® combine binary classifiers via voting mechanism,

typically majority vote: h: x — argmax f;(x).
ley

® Problem: poor justification (in general).
® calibration: classifier scores not comparable.

® nevertheless: simple and frequently used in
practice, computational advantages in some cases.



One-vs-One

B Technique:
® for each pair (/,")€Y,l#l'learn binary
classifier h;; : X —{0,1}.

® combine binary classifiers via majority vote:

h(z) = argmax |{l : by (z) = 1}|.
l'eY

B Problem:
® computational: train k(k — 1)/2 binary classifiers.

® overfitting: size of training sample could become
small for a given pair.



Computational Comparison

Training Testing
One'VS'a” O(kBtrain(m)) O(kBtest)
O(km®)
O(kQBtrain (m/k)) 2
One-vs-one (on average) O(k* Biest)
|O(k2_o‘mo‘) smaller Ngy per B

Time complexity for SVMs, & less than 3.




Error-Correcting Code Approach

(Dietterich and Bakiri, 1995)

A |dea;

® assign F-long binary code word to each class:
—— M = [M;;] € {0, 1}LAIXILE],

® |earn binary classifier f;: X — {0, 1} for each
column. Example zin class [ labeled with M.

® classifier output( ()= (f1(x),. -,fF(ZE))),

h: z+— argmin dgamming (Ml : f(:v)) :
leY



lllustration

B 8 classes, code-length: 6.

codes

f1(@)f2(x)fs(x)fa(x)fs(x)fe(x

new example T

o

o

4
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S9SSE|d




Error-Correcting Codes - Design

B Main ideas:

® independent columns: otherwise no effective
discrimination.

® distance between rows: if the minimal Hamming
distance between rows is d, then the multi-class

can correct L%J errors.

® columns may correspond to features selected
for the task.

® one-vs-all and one-vs-one (with ternary codes)
are special cases.



Extensions

(Allwein et al., 2000)
® Matrix entries in {—1,0, +1}:

® examples marked with 0 disregarded during
training.

® ——> one-vs-one becomes also a special case.

B Margin loss L: function of yf(x), e.g., hinge loss.

® Hamming loss:
X E 1 - sgn (M, f;(x))
h(x) = argmin Z
le{1,...k} 52 2



Applications

® One-vs-all approach is the most widely used.

B No clear empirical evidence of the superiority of
other approaches (Rifkin and Klautau, 2004).

® except perhaps on small data sets with relatively
large error rate.

B |arge structured multi-class problems: often
treated as ranking problems (see ranking lecture).
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