
pageFoundations of Machine Learning

This Lecture
Basic definitions and concepts. 

Introduction to the problem of learning. 

Probability tools.
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Definitions
Spaces: input space    , output space   . 

Loss function:                       . 

•             : cost of predicting    instead of   . 

• binary classification: 0-1 loss,                          . 

• regression:          ,                              . 

Hypothesis set:             , subset of functions out of which 
the learner selects his hypothesis. 

• depends on features. 

• represents prior knowledge about task.
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Supervised Learning Set-Up
Training data: sample    of size     drawn i.i.d. from         
according to distribution    : 

Problem: find hypothesis          with small generalization 
error. 

• deterministic case: output label deterministic function of 
input,              . 

• stochastic case: output probabilistic function of input.

18

S m
D

X⇥Y

S = ((x1, y1), . . . , (xm, ym)).

h2H

y=f(x)



pageFoundations of Machine Learning

Errors
Generalization error: for          , it is defined by 

Empirical error: for          and sample   , it is 

Bayes error: 

• in deterministic case, 
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Noise
Noise: 

• in binary classification, for any           , 

• observe that 
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Learning ≠ Fitting

21

       Notion of simplicity/complexity. 
       How do we define complexity?
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Generalization
Observations: 

• the best hypothesis on the sample may not be the best 
overall. 

• generalization is not memorization. 

• complex rules (very complex separation surfaces) can be 
poor predictors. 

• trade-off: complexity of hypothesis set vs sample size 
(underfitting/overfitting).
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Model Selection
General equality: for any          , 

Approximation: not a random variable, only depends on    . 

Estimation: only term we can hope to bound.
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Empirical Risk Minimization
Select hypothesis set    . 

Find hypothesis           minimizing empirical error: 

• but     may be too complex. 

• the sample size may not be large enough.
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Generalization Bounds
Definition: upper bound on 

Bound on estimation error for hypothesis     given by ERM:
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Model Selection
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Structural Risk Minimization
Principle: consider an infinite sequence of hypothesis sets 
ordered for inclusion, 

• strong theoretical guarantees.  

• typically computationally hard.
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(Vapnik, 1995)

H1 ⇢ H2 ⇢ · · · ⇢ Hn ⇢ · · ·

h = argmin
h2Hn,n2N

bR(h) + penalty(Hn,m).
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General Algorithm Families
Empirical risk minimization (ERM): 

Structural risk minimization (SRM):                    , 

Regularization-based algorithms:         ,
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This Lecture
Basic definitions and concepts. 

Introduction to the problem of learning. 

Probability tools.
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Basic Properties
Union bound:  

Inversion: if                            , then, for any         , with 
probability at least         ,                    . 

Jensen’s inequality: if    is convex,                                . 

Expectation: if           ,                                           .
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Basic Inequalities
Markov’s inequality: if           and         , then 

Chebyshev’s inequality: for any         ,
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X�0 ✏>0
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Hoeffding’s Inequality
Theorem: Let                     be indep. rand. variables with the 
same expectation    and                , (        ). Then, for any        , 
the following inequalities hold:
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McDiarmid’s Inequality
Theorem: let                     be independent random variables 
taking values in    and                   a function verifying for     
all               ,
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(McDiarmid, 1989)
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Markov’s Inequality
Theorem: let     be a non-negative random variable          
with                 , then, for all         , 

Proof:
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Chebyshev’s Inequality
Theorem: let     be a random variable with                    , then, 
for all        , 

Proof: Observe that 

The result follows Markov’s inequality. 
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X Var[X]<1
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Pr[|X � E[X]| � t�X ]  1
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Weak Law of Large Numbers
Theorem: let                be a sequence of independent 
random variables with the same mean    and variance           
and let                             , then, for any         , 

Proof: Since the variables are independent,  

Thus, by Chebyshev’s inequality,
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Concentration Inequalities
Some general tools for error analysis and bounds: 

• Hoeffding’s inequality (additive). 

• Chernoff bounds (multiplicative). 

• McDiarmid’s inequality (more general).
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Hoeffding’s Lemma
Lemma: Let                  be a random variable with                
and         . Then for any         , 

Proof: by convexity of             , for all               ,
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Taking the derivative gives:  

Note that:                                        Furthermore, 

with                   There exists               such that:
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Hoeffding’s Theorem
Theorem: Let                    be independent random variables.           
Then for                  , the following inequalities hold             
for                          , for any         , 

Proof: The proof is based on Chernoff ’s bounding 
technique: for any random variable     and         , apply 
Markov’s inequality and select   to minimize
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Using this scheme and the independence of the random 
variables gives 

The second inequality is proved in a similar way.
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Hoeffding’s Inequality
Corollary: for any         , any distribution     and any 
hypothesis                       , the following inequalities hold: 

Proof:  follows directly Hoeffding’s theorem. 

Combining these one-sided inequalities yields
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Chernoff ’s Inequality
Theorem: for any         , any distribution     and any 
hypothesis                       , the following inequalities hold: 

Proof:  proof based on Chernoff ’s bounding technique.
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McDiarmid’s Inequality
Theorem: let                     be independent random variables 
taking values in    and                   a function verifying for     
all               ,
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(McDiarmid, 1989)

Then, for all         ,

X1, . . . , Xm

✏>0

U f :Um!R
i2 [1,m]

sup
x1,...,xm,x

0
i

|f(x1, . . . , xi

, . . . , x

m

)�f(x1, . . . , x
0
i

, . . . , x

m

)|c

i

.

Pr

h��f(X1, . . . , Xm)�E[f(X1, . . . , Xm)]

��>✏
i
2 exp

✓
� 2✏2Pm

i=1 c
2
i

◆
.



pageFoundations of Machine Learning

Comments: 

• Proof: uses Hoeffding’s lemma. 

• Hoeffding’s inequality is a special case of McDiarmid’s 
with 
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f(x1, . . . , xm) =
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mX
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Jensen’s Inequality
Theorem: let     be a random variable and    a measurable 
convex function. Then,  

Proof: definition of convexity, continuity of convex 
functions, and density of finite distributions.
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X

f(E[X])  E[f(X)].
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