This Lecture

B Basic definitions and concepts.
B |ntroduction to the problem of learning.

B Probability tools.
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Definitions

B Spaces: input space X, output space.

B [oss function:L: Y XY —R.
* [L(y,y): cost of predicting y instead of y.
* binary classification: 0-1 loss, L(y, y') =12,
* regression:Y CR, I(y,y)=(y —y)°
® Hypothesis set: H C Y, subset of functions out of which
the learner selects his hypothesis.
* depends on features.

® represents prior knowledge about task.
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Supervised Learning Set-Up

B Training data: sample S of size mdrawn i.i.d. from X xY
according to distribution D:

S=((1,91),- s (Tm>Ym))-

B Problem: find hypothesis h e Hwith small generalization
error.

e deterministic case: output label deterministic function of
input, y=f(x).
® stochastic case: output probabilistic function of input.
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Errors

B Generalization error: for he H, it is defined by

R = B L))

B Empirical error: for he Hand sample S, it is
. 1 <&
R(h) = — > L(h(x:), yi)-
1=1
@ Bayes error:
R*= inf R(h).

h
h measurable

® in deterministic case, R*=0.
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Noise

B Noise:

® in binary classification, for any z € X,

noise(z) = min{Pr[1|z], Pr[0|z]}.

® oObserve that Ejnoise(z)] = R™.
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Learning # Fitting

Notion of simplicity/complexity.
—3 How do we define complexity?
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Generalization

B Observations:

* the best hypothesis on the sample may not be the best
overall.

®* generalization is not memorization.

e complex rules (very complex separation surfaces) can be
poor predictors.

* trade-off: complexity of hypothesis set vs sample size
(underfitting/overfitting).
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Model Selection

B General equality: for any he H, /best in class

R(h) — R* = [R(h) — R(h")] + [R(h*) — R].

J/

TV TV
estimation approximation

B Approximation: not a random variable, only depends on H.

B Estimation: only term we can hope to bound.
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Empirical Risk Minimization

B Select hypothesis set H.

B Find hypothesis h€ H minimizing empirical error:

h = argmin R(h).
he H

* but Hmay be too complex.

® the sample size may not be large enough.
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Generalization Bounds

B Definition: upper bound on Pr |sup |R(h) — R(h)| > e] .
| heH

® Bound on estimation error for hypothesishggiven by ERM:

R(ho) — R(h*) = R(ho) — R(ho) + R(ho) — R(h")
< R(ho) — R(ho) + R(h*) — R(h*)
<2 sup [R(h) — R(h)|

-3 How should we choose H? (model selection problem)
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Model Selection

error

- estimation
= approximation
- upper bound
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Structural Risk Minimization

(Vapnik, 1995)
B Principle: consider an infinite sequence of hypothesis sets
ordered for inclusion,

HiCHyC---CH,C---

h = argmin R(h) + penalty(H,,m).
heH, ,neN

® strong theoretical guarantees.

® typically computationally hard.
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General Algorithm Families

B Empirical risk minimization (ERM):

h = argmin R(h).
he H

B Structural risk minimization (SRM): H, CH,, .1,

h = argmin R(h) + penalty(H,,m).
heH, neN

B Regularization-based algorithms: A >0,

h = argmin R(h) + A||h]|%.
he H

Foundations of Machine Learning page 28



This Lecture

B Basic definitions and concepts.
B [ntroduction to the problem of learning.

B Probability tools.
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Basic Properties

® Union bound: Pr[A Vv B] < Pr[A] + Pr[B].

B |nversion: if Pr[X > €] < f(e), then, for any 6 >0, with
probability at least 1—§, X < f71(4).

m Jensen’s inequality: if f is convex, f(E[X]) <E[f(X)].
+o00
B Expectation: if X >0, E[X]:/ Pr|X > t]dt.
0
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Basic Inequalities

B Markov's inequality: if X >0and >0, then

Pr[X >¢] < B

€

B Chebyshev's inequality: for any e >0,

Pr[|X — E[X]| > d < %
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Hoeffding's Inequality

B Theorem: Let X4,..., X,, be indep. rand. variables with the
same expectation pand X; € [a, b], (a <b). Then, for anye>0,
the following inequalities hold:

2me?
_ . < _
Pr [,u mZXZ>6] _exp( (b—a,)2>

1=1

1 — 2me?
Pr [E;Xi—,u>e] < exp (_(b—a)2>'
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McDiarmid's Inequality

(McDiarmid, 1989)

B Theorem:let X,...,X,,beindependent random variables
taking values in Uand f: U™ — R a function verifying for
all i€ [1,m],

sup ]]/‘(xl,...,xi,...,a:m)—f(:vl,...,:vi,...,xm)\gcz-.

Then, for all e>0,

62
Pr[\f(Xl,...,Xm)—E[f(Xl,...,Xm)]\>e]§2exp(—zi C2>.
1=1 "1
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Appendix
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Markov's Inequality

B Theorem: let X be a non-negative random variable
with E[X| <0, then, for all £>0,

Pr[X > tE[X]] < %
& Proof:
Pr[X >tE[X]]= » Pr[X =a]
r>tE[X]
X
< ) Pr[X =g 50
x>t B[ X]
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Chebyshev's Inequality

® Theorem: let X be a random variable with Var|X] < oo, then,
for all ¢ >0,
1

Pr(|X — E[X]| > tox] < .

B Proof: Observe that
Pr[|X — E[X]| > tox] = Pr[(X — E[X])* > t?0%].

The result follows Markov's inequality.
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Weak Law of Large Numbers

B Theorem: let (X, )nen be a sequence of independent

random variables with the same mean 1 and variance o?<oo

andlet X, =1 %" X, then, for any ¢>0,
lim Pr[|X,, —pu| > € =0.
n—oo

B Proof: Since the variables are independent,

2 2

Var[X zvar[ |- -

n? n

B Thus, by Chebyshev's inequality,

0.2

Pr(| X, — u| > € < —.
X0 —pl > < 2
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Concentration Inequalities

B Some general tools for error analysis and bounds:
* Hoeffding's inequality (additive).
® Chernoff bounds (multiplicative).

e McDiarmid's inequality (more general).

Foundations of Machine Learning page 38



Hoeffding's Lemma

B |Lemma: Let X € |a,b] be a random variable with E[ X ]=0
and b#a. Then for any t>0,

2 (b a2
Ele’*] < e w

® Proof: by convexity of z— €™, for all a<z <b,

b—x T —a
tx ta tb
e < € €
— b—a b—a
Thus,
E[etX] < E[%__f eta )b(_—aaetb] _ %eta 1+ %etb _ eqb(t)’
with,
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B Taking the derivative gives:

t(b—a)
Qb/(t) —a— 3 ﬁe a_et(b—a) — G — Le—t(ba—a)_ a_ -

b—a b— b—a b—a

® Note that: ¢(0) = 0 and ¢'(0) = 0. Furthermore,

1" —abe_t(b_a)
(1) = R N
_a(l—a)e "I (b —a)’
B (1 — a)e—tb—a) 4 ]2
— Q (1— a)e—t(b—a) ,
N (1 —a)e tb=a) 4 o] [(1 — a)e~tb—a) + q] (b —a)
~ut- -7 < 50
witha = b_— o There exists 0<6 <t such that:

6(t) = 0(0) +19'(0) + () < 2 L=
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Hoeffding's Theorem

B Theorem: Let X,..., X,,beindependent random variables.
Then for X; € |a;, b;], the following inequalities hold
for S,, =>"", X;, forany >0,

PI‘[Sm — E[Sm] > 6] < 6_262/2?:1(@—%)2
Pr[Sm — E[Sm] < _6] < 6_262/2?@:1(5'5_“’5)2.

B Proof: The proof is based on Chernoff's bounding
technique: for any random variable X and ¢t >0, apply
Markov's inequality and select {to minimize

E[etX]

Pr[X > €] = Prle!* > €] < :
e €
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B Using this scheme and the independence of the random
variables gives Pr|S,,, — E[S,,] > €]
< et eHSm—ElSm))]

e—tengl E[@t(XZ_E[XZ])]
e—tengletQ(bi—ai)Q/S
6—t€6t2 Z;'nzl(bi_ai)Q/S

6—262/ Z;n:l (bi—ai)Q

(lemma applied to X; —E[X;])

A

IA

choosing t = 4¢/ > """ (b; — a;)?.

B The second inequality is proved in a similar way.
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Hoeffding's Inequality

B Corollary: for any e>0, any distribution D and any
hypothesis h: X —{0, 1}, the following inequalities hold:

Pr[R(h) — R(h) > €] < e~ 2m¢
Pr[R(h) — R(h) < —¢] < 727"
® Proof: follows directly Hoeffding's theorem.

B Combining these one-sided inequalities yields

AN

Pr [\R(h) ~ R(h)| > e] < 9¢2me”,
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Chernoftf’s Inequality

B Theorem: for any >0, any distribution D and any
hypothesis h: X —{0, 1}, the following inequalities hold:

B Proof: proof based on Chernoff's bounding technique.
Pr(R(R) > (1+)R(h)] < e /3
Pr[R(h) < (1 — e)R(h)] < e ™R /2

Foundations of Machine Learning page44



McDiarmid's Inequality

(McDiarmid, 1989)

B Theorem:let X,...,X,,beindependent random variables
taking values in Uand f: U™ — R a function verifying for
all i€ [1,m],

sup ]]/‘(xl,...,xi,...,a:m)—f(:vl,...,:vi,...,xm)\gcz-.

Then, for all e>0,

62
Pr[\f(Xl,...,Xm)—E[f(Xl,...,Xm)]\>e]§2exp(—zi C2>.
1=1 "1
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B Comments:

® Proof: uses Hoeffding's lemma.
* Hoeffding's inequality is a special case of McDiarmid’s
with

1 ik ‘bz — CLZ"
e o o m - Z‘ d ’l: - .
flzy,...,xm) ;:1 r; and c

m
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Jensen's Inequality

B Theorem: let X be a random variable and fa measurable
convex function. Then,

f(E[X]) < E[f(X)].

B Proof: definition of convexity, continuity of convex
functions, and density of finite distributions.

A

PR+ (T = ) fiy) /
fiy) i

Mex+7(1-t)y)
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