Foundations of Machine Learning
Boosting



Weak Learning
(Kearns and Valiant, 1994)
B Definition: concept class C is weakly PAC-learnable
if there exists a (weak) learning algorithm Land~y >0
such that:
® for all >0, for all ¢ € C'and all distributions D,
1

P < — — > 1 —
SNI.D R(hS) = 9 fY_ 57

® for samples S of size m=poly(1/6)for a fixed
polynomial.



Boosting ldeas

B Finding simple relatively accurate base classifiers
often not hard «— weak learner.

B Main ideas:
® use weak learner to create a strong learner.

® combine base classifiers returned by weak learner
(ensemble method).

® But, how should the base classifiers be combined?



AdaBoost

(Freund and Schapire, 1997)
HC{-1,+1}*.

ADABOOST(S=((z1,%1), - -, (T, Ym)))

1 fori:<+1tomdo
2 Dl()%—

3 fort<+1toT do
4 h < base classifier in H with small error ¢, = Pr [hi(x;) #y]
5 Qap — = 5 10g — e
6 Ly — 2[6,5(1 — et)]% > normalization factor
7 for 1 < 1 to m do
8 Dt+1<') y Dy (%) eXP(—ZOétyiht(xi))
9 ft < Z =1 053
10 return h = sgn(fT)



Notes

B Distributions D;over training sample:
® originally uniform.

® at each round, the weight of a misclassified
example is increased.

" . . —yi fi(zg) .
® observation: D, (i)=&, since
D . Dt(’i)e_atyiht(iﬁi) Dt_l(i)e_at—lyiht—l(xi)e—atyiht(l‘i) 1 e_y’izz:l ashs(xz')
)= Z B Zy—12¢ T m [Teey Zs

B Weight assigned to base classifier h;: o directly
depends on the accuracy of h; at round ¢.
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Bound on Empirical Error
(Freund and Schapire, 1997)

B Theorem:The empirical error of the classifier
output by AdaBoost verifies:

Rit) < exp | - gz(__et)].

o [f furtherforallte[l,T],7=< (%—et),then
)

S

R(h) < exp(—2v7

® v does not need to be known in advance:
adaptive boosting.



® Proof: Since,as we saw, D;_ (i) =

R(h)
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® Now, since Zt IS a normallzatlon factor,
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® Notes:
® o, minimizer of ar (1—¢;)e™ “+ee”
® since (1—e;)e” “* =€, at each round, AdaBoost

assigns the same probability mass to correctly
classified and misclassified instances.

® for base classifiers x+—[—1,+1], oy can be
similarly chosen to minimize Z,.



AdaBoost = Coordinate Descent

B Objective Function: convex and differentiable.
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® Direction: unit vector e, with best directional

derivative:
Flay — Fla,_
F'(ey_1,ex) = lim (i1 + nex) (@-1) .

n—0 n
m

® Since F(ézt_l + nek) — Z e Yi SN @ hy(zi) —nyihe (z) ’

Thus, direction corresponding to base classifier with smallest error.



® Step size:nchosen to minimize F (a1 + nex);
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Thus, step size matches base classifier weight of AdaBoost.



Alternative Loss Functions

10 | boosting loss
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Standard Use in Practice

B Base learners: decision trees, quite often just
decision stumps (trees of depth one).

B Boosting stumps:

data in R", e.g.,N =2, (height(x), weight(z)).
associate a stump to each component.
pre-sort each component: O(Nmlogm).

at each round, find best component and threshold.
total complexity: O((mlogm)N + mNT).

stumps not weak learners: think XOR example!



Overfitting?

B Assume that VCdim(H)=d and for a fixed T', define

T
fT: {Sgn(z&tht—b)I&t,bER,htEH}.
t=1

® 77 can form a very rich family of classifiers. It can
be shown (Freund and Schapire, 1997) that:

VCdim(Fr) < 2(d+ 1)(T + 1) log,((T + 1)e).

B This suggests that AdaBoost could overfit for large
values of 7', and that is in fact observed in some
cases, but in various others it is not!



Empirical Observations

B Several empirical observations (not all): AdaBoost
does not seem to overfit, furthermore:

/ test error

training error _
{10 100 1000
# rounds

C4.5 decision trees (Schapire et al., 1998).



Rademacher Complexity of Convex Hulls

B Theorem:Let H be a set of functions mapping
from X to R. Let the convex hull of H be defined as

p p
conv(H) = {Z,ukhk:pz 1,,uk20,z,uk§1,hk c H}.
k=1 k=1

Then, for any sample S, Rs(conv(H)) = Re(H).
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Margin Bound - Ensemble Methods

(Koltchinskii and Panchenko, 2002)
B Corollary: Let H be a set of real-valued functions.
Fix p>0. For any 6 >0, with probability at least 19,
the following holds for all h €conv(H):

~ 2 log +
R(h) < R,(h) + =R, (H 0
(h) < Bop(h) + “%Rm (H) + 1/ 5
R(h) < By(h) + R (H) + 3 log ;
- 0 o 2m

| Proof: Direct consequence of margin bound of
Lecture 4 and R (conv(H))=Rg(H).



Margin Bound - Ensemble Methods

(Koltchinskii and Panchenko, 2002); see also (Schapire et al., 1998)
B Corollary: Let H be a family of functions taking
values in {—1,4+1} withVC dimension d . Fixp>0.
For anyd >0, with probability at least1—46, the
following holds for all h € conv(H):

2\/2dlog% log %

R(h) < R,(h) + = |

0 m 2m

® Proof: Follows directly previous corollary and VC
dimension bound on Rademacher complexity (see
lecture 3).



Notes

B All of these bounds can be generalized to hold

uniformly for allp<(0,1), at the cost of an additional

term \/log log; 2 and other minor constant factor
m
Changes (Koltchinskii and Panchenko, 2002).

B For AdaBoost, the bound applies to the functions

) Y auly()

lady e

T | € conv(H).

B Note that 7'does not appear in the bound.



Margin Distribution

B Theorem: For anyp>0, the following holds:

S[yf(z) _ -
Pr| YL ol <o T Vel P = et
- t=1
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B Proof: Using the identity D;, (i) =
m Z Lyif@—lalipso = — ZeXp —yif(x:) + |lall1p)

1=1
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Notes

B [fforallte[l,T],7< (% —¢€¢), then the upper bound
can be bounded by

f);[yf(x) _ p} < [(1 _2v)1_p(1+2v)1+pr/z.

Forp<«, (1-2v)*(1+2~)*?<1and the bound
decreases exponentially inT'.

B For the bound to be convergent: p > O(1/y/m),
thus v > O(1/+/m) is roughly the condition on the
edge value.



Outliers

B AdaBoost assigns larger weights to harder
examples.

B Application:
® Detecting mislabeled examples.

® Dealing with noisy data: regularization based on
the average weight assigned to a point (soft
margin idea for boosting) (Meir and Ritsch, 2003).



LI-Geometric Margin

B Definition: the Li-margin ps(z) of a linear
function f =3/, a:hy with a # 0 at a point x € X is
defined by

o) = V@I _ [ Zmaddu(@)] _ |e-h(@)]

el lels el

® thel,-margin of f over a sample S = (z1,...,z,)is
its minimum margin at points in that sample:

pr= min pf(xr;) = min
T ieim) (i) ie[t,m] |||y



SVM vs AdaBoost

<I>1(:13) hi(x)
features or [ . ] h(z) — [ 5 ]
base hypotheses Py () h ()

cowa@  serahln
y(w - ®(x)) y(a - h(z))

= do(®(x), hyperpl.)

||W||2



Maximum-Margin Solutions




But, Does AdaBoost Maximize the Margin!?

B No:AdaBoost may converge to a margin that is
significantly below the maximum margin (Rudin et al,,
2004) (e.g., 1/3 instead of 3/8)!

B | ower bound:AdaBoost can achieve asymptotically
a margin that is at least 2max if the data is separable
and some conditions on the base learners hold
(Ratsch and Warmuth, 2002).

B Several boosting-type margin-maximization
algorithms: but, performance in practice not clear
or not reported.



AdaBoost’s Weak Learning Condition

B Definition: the edge of a base classifier h; for a
distribution D over the training sample is

At = 3 — e = 3 3 wihilw)D00),

B Condition: there exists v >0 for any distribution D
over the training sample and any base classifier

v(t) = 7.



Zero-Sum Games

B Definition:

® payoff matrix M = (M,;;) e R"™*",

® mpossible actions (pure strategy) for row player.
® 7 possible actions for column player.

® M,;; payoff for row player (=loss for column
player) when row plays i, column plays .

B Example:

rock

paper

SCissors

rock

0

paper

0

SCisSsors

0




Mixed Strategies
(von Neumann, 1928)
B Definition: player row selects a distribution p over
the rows, player column a distribution q over
columns. The expected payoff for row is

m n
E My = > »iMijg; =p Ma.
i i=1 j=1

B von Neumann’s minimax theorem:

maxminp ' Mq = minmaxp ' Mq.
P dq a p

® equivalent form:

max min pTMej = min max e,L-TMq.
P j€[l,n] a i€[l,m]



John von Neumann (1903 - 1957)




AdaBoost and Game Theory

B Game:

® Player A:selects point z;,i€[1,m)].

® Player B:selects base learner h;, t€[1,T.

® Payoff matrix M c {—1, +1}™*%: My, = y;h ().
® von Neumann’s theorem: assume finite H.

m T

: . : Oétht(%')
24" = min max D(Dy;h(x;) = max min v, — p~.
K D heH ‘= (Dyih(z:) a  ie[l,m] yz; |1 P




Consequences

B Weak learning condition = non-zero margin.
® thus, possible to search for non-zero margin.

® AdaBoost = (suboptimal) search for

corresponding o; achieves at least half of the
maximum margin.

B Weak learning =strong condition:

® the condition implies linear separability with
margin 2+ > 0.



Linear Programming Problem

B Maximizing the margin:
(Oé y Xi)

p = max min vy; .
a ie[l,m]”  |lal|1
B This is equivalent to the following convex

optimization LP problem:

max p
(84

subject to : y; (- x;) > p

a1 = 1.
B Note that;

= ||x — H||oo, with H = {x: a-x = 0}.




Advantages of AdaBoost

B Simple: straightforward implementation.

B Efficient: complexity O(mNT) for stumps:
® when Nand T are not too large, the algorithm is
quite fast.
B Theoretical guarantees: but still many questions.
® AdaBoost not designed to maximize margin.

® regularized versions of AdaBoost.



Weaker Aspects

B Parameters:

® need to determine T, the number of rounds of
boosting: stopping criterion.

® need to determine base learners: risk of
overfitting or low margins.

B Noise: severely damages the accuracy of Adaboost
(Dietterich, 2000).



Other Boosting Algorithms

B arc-gv (Breiman, 1996): designed to maximize the
margin, but outperformed by AdaBoost in
experiments (Reyzin and Schapire, 2006).

B | |-regularized AdaBoost (Raetsch et al., 2001):
outperfoms AdaBoost in experiments (Cortes et al.,
2014).

B DeepBoost (Cortes et al,, 2014): more favorable
learning guarantees, outperforms both AdaBoost
and L|-regularized AdaBoost in experiments.
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