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Weak Learning

Definition: concept class    is weakly PAC-learnable 
if there exists a (weak) learning algorithm   and 
such that:

• for all       , for all         and all distributions   ,

• for samples   of size                    for a fixed 
polynomial.
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Finding simple relatively accurate base classifiers 
often not hard         weak learner.

Main ideas: 

• use weak learner to create a strong learner.

• combine base classifiers returned by weak learner 
(ensemble method).

But, how should the base classifiers be combined?

Boosting Ideas
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AdaBoost

4

H�{�1, +1}X.
(Freund and Schapire, 1997)

AdaBoost(S=((x1, y1), . . . , (xm, ym)))

1 for i 1 to m do
2 D1(i) 1

m
3 for t 1 to T do
4 ht  base classifier in H with small error ✏t= Pr

i⇠Dt

[ht(xi) 6=yi]

5 ↵t  1
2 log

1�✏t
✏t

6 Zt  2[✏t(1� ✏t)]
1
2 . normalization factor

7 for i 1 to m do

8 Dt+1(i) Dt(i) exp(�↵tyiht(xi))
Zt

9 ft  
Pt

s=1 ↵shs

10 return h = sgn(fT )
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Notes

Distributions    over training sample:

• originally uniform.

• at each round, the weight of a misclassified 
example is increased.

• observation:                      , since

Weight assigned to base classifier    :     directly 
depends on the accuracy of     at round   .
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Illustration

t = 1

t = 2
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t = 3

. . . . . .
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=

α1 +α3+α2
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Bound on Empirical Error

Theorem: The empirical error of the classifier 
output by AdaBoost verifies:

• If further for all            ,                  , then

•   does not need to be known in advance: 
adaptive boosting.

t� [1, T ] ��(1
2��t)

�R(h) � exp(�2�2T ).

�R(h) � exp
�
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�
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(Freund and Schapire, 1997)



pageMehryar Mohri - Foundations of Machine Learning 10

• Proof:  Since, as we saw,                           ,

• Now, since     is a normalization factor,
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• Thus, 

• Notes:

•     minimizer of                             .

• since                          , at each round, AdaBoost 
assigns the same probability mass to correctly 
classified and misclassified instances.

• for base classifiers                  ,     can be 
similarly chosen to minimize    .
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Objective Function: convex and differentiable.

AdaBoost    Coordinate Descent

e�x

0�1 loss

=

F (↵̄) =
1

m

mX

i=1

e�yif(xi) =
1

m

mX

i=1

e�yi
PN

j=1 ↵̄jhj(xi) .
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• Direction: unit vector    with best directional 
derivative:

• Since                                                             ,

Thus, direction corresponding to base classifier with smallest error. 

F 0(↵̄t�1, ek) = lim
⌘!0
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• Step size:   chosen to minimize                  ;

Thus, step size matches base classifier weight of AdaBoost. 

dF (↵̄t�1 + ⌘ek)
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= 0 , �
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PN
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Alternative Loss Functions

15

x ��(1 � x)2 1x�1

square loss
x ��e�x
boosting loss

x �� log2(1 + e�x)
logistic loss

x ��max(1� x, 0)
hinge loss

x ��1x<0
zero-one loss
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Base learners: decision trees, quite often just 
decision stumps (trees of depth one).

Boosting stumps:

• data in     , e.g.,        ,                               .

• associate a stump to each component.

• pre-sort each component:                   .

• at each round, find best component and threshold.

• total complexity:                                  .

• stumps not weak learners: think XOR example!

Standard Use in Practice

RN N =2 (height(x), weight(x))

O(Nm log m)

O((m log m)N + mNT )
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Overfitting?

Assume that                     and for a fixed   , define

     can form a very rich family of classifiers. It can 
be shown (Freund and Schapire, 1997) that:

This suggests that AdaBoost could overfit for large 
values of    , and that is in fact observed in some 
cases, but in various others it is not!
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VCdim(H)=d

FT =
�

sgn
� T�
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�tht � b
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�
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T

FT

VCdim(FT ) � 2(d + 1)(T + 1) log2((T + 1)e).

T
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Several empirical observations (not all): AdaBoost 
does not seem to overfit, furthermore: 

Empirical Observations
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Figure 2: Error curves and the margin distribution graph for boosting C4.5 on

the letter dataset as reported by Schapire et al. [69]. Left: the training and test

error curves (lower and upper curves, respectively) of the combined classifier as

a function of the number of rounds of boosting. The horizontal lines indicate the

test error rate of the base classifier as well as the test error of the final combined

classifier. Right: The cumulative distribution of margins of the training examples

after 5, 100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly

hidden) and solid curves, respectively.

It is a number in and is positive if and only if correctly classifies the

example. Moreover, as before, the magnitude of the margin can be interpreted as a

measure of confidence in the prediction. Schapire et al. proved that larger margins

on the training set translate into a superior upper bound on the generalization error.

Specifically, the generalization error is at most

for any with high probability. Note that this bound is entirely independent

of , the number of rounds of boosting. In addition, Schapire et al. proved that

boosting is particularly aggressive at reducing the margin (in a quantifiable sense)

since it concentrates on the examples with the smallest margins (whether positive

or negative). Boosting’s effect on the margins can be seen empirically, for instance,

on the right side of Fig. 2 which shows the cumulative distribution of margins of the

training examples on the “letter” dataset. In this case, even after the training error

reaches zero, boosting continues to increase the margins of the training examples

effecting a corresponding drop in the test error.

Although the margins theory gives a qualitative explanation of the effectiveness

of boosting, quantitatively, the bounds are rather weak. Breiman [9], for instance,

7

training error

test error

C4.5 decision trees (Schapire et al., 1998).
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Rademacher Complexity of Convex Hulls

Theorem: Let    be a set of functions mapping   
from    to   . Let the convex hull of    be defined as 

Proof:
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Margin Bound - Ensemble Methods 

Corollary: Let    be a set of real-valued functions. 
Fix       . For any       , with probability at least       , 
the following holds for all                 :

Proof: Direct consequence of margin bound of 
Lecture 4 and                                .
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h�conv(H)

�RS(conv(H))= �RS(H)

(Koltchinskii and Panchenko, 2002)
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Margin Bound - Ensemble Methods 

Corollary: Let    be a family of functions taking 
values in              with VC dimension   . Fix       . 
For any       , with probability at least       , the 
following holds for all                 :

Proof: Follows directly previous corollary and VC 
dimension bound on Rademacher complexity (see 
lecture 3).
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(Koltchinskii and Panchenko, 2002); see also (Schapire et al., 1998) 
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Notes

All of these bounds can be generalized to hold 
uniformly for all           , at the cost of an additional 
term              and other minor constant factor 
changes (Koltchinskii and Panchenko, 2002).

For AdaBoost, the bound applies to the functions

Note that    does not appear in the bound.
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x �� f(x)
���1

=
�T
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���1
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Margin Distribution

Theorem: For any       , the following holds:

Proof: Using the identity                        ,  
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Notes

If for all            ,                 , then the upper bound 
can be bounded by

For the bound to be convergent:                     , 
thus                      is roughly the condition on the 
edge value.
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Outliers

AdaBoost assigns larger weights to harder 
examples.

Application:

• Detecting mislabeled examples.

• Dealing with noisy data: regularization based on 
the average weight assigned to a point (soft 
margin idea for boosting) (Meir and Rätsch, 2003).
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L1-Geometric Margin

Definition: the   -margin        of a linear        
function                   with         at a point         is 
defined by

• the   -margin of   over a sample                     is 
its minimum margin at points in that sample:
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L1 ⇢f (x)

f =
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t=1 ↵tht ↵ 6= 0 x 2 X
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��

k↵k1
.
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SVM vs AdaBoost

27

SVM AdaBoost

features or 
base hypotheses

predictor

geom. margin

conf. margin

regularization            (L1-AB)

h(x) =


h1(x)...
hN (x)

�
�(x) =


�1(x)...
�N (x)

�

x 7! w ·�(x) x 7! ↵ · h(x)

��↵ · h(x)
��

k↵k1
= d1(h(x), hyperpl.)

y(w ·�(x)) y(↵ · h(x))

kwk2 k↵k1

��w ·�(x)
��

kwk2
= d2(�(x), hyperpl.)
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Maximum-Margin Solutions

28

Norm || · ||2. Norm || · ||∞.
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No: AdaBoost may converge to a margin that is 
significantly below the maximum margin (Rudin et al., 

2004) (e.g., 1/3 instead of 3/8)!

Lower bound: AdaBoost can achieve asymptotically 
a margin that is at least       if the data is separable 
and some conditions on the base learners hold 
(Rätsch and Warmuth, 2002).

Several boosting-type margin-maximization 
algorithms: but, performance in practice not clear 
or not reported.

But, Does AdaBoost Maximize the Margin?

�max
2
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AdaBoost’s Weak Learning Condition

Definition: the edge of a base classifier    for a 
distribution    over the training sample is

Condition: there exists        for any distribution    
over the training sample and any base classifier

30
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Zero-Sum Games

Definition:

• payoff matrix                           .

•    possible actions (pure strategy) for row player.

•    possible actions for column player.

•       payoff for row player (   loss for column 
player) when row plays  , column plays  .

Example:

31

M = (Mij)�Rm�n

m

n

Mij =
i j

rock paper scissors
rock 0 -1 1
paper 1 0 -1

scissors -1 1 0
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Mixed Strategies

Definition: player row selects a distribution   over 
the rows, player column a distribution   over 
columns. The expected payoff for row is

von Neumann’s minimax theorem:

• equivalent form:
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e�i Mq.

(von Neumann, 1928)

E
i�p
j�q

[Mij ] =
m�

i=1

n�

j=1

piMijqj = p�Mq.



pageMehryar Mohri - Foundations of Machine Learning

John von Neumann (1903 - 1957)

33
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AdaBoost and Game Theory

Game:

• Player A: selects point    ,            .

• Player B: selects base learner    ,            .

• Payoff matrix                         :                    .
von Neumann’s theorem: assume finite   .

34
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Consequences

Weak learning condition       non-zero margin.

• thus, possible to search for non-zero margin.

• AdaBoost    (suboptimal) search for 
corresponding   ; achieves at least half of the 
maximum margin.

Weak learning   strong condition:

• the condition implies linear separability with 
margin          .

35
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Maximizing the margin:

This is equivalent to the following convex 
optimization LP problem:

Note that:

Linear Programming Problem

� = max
�

min
i�[1,m]

yi
(� · xi)
||�||1

.

max
�

�

subject to : yi(� · xi) � �

���1 = 1.

|� · x|
���1

= �x�H��, with H = {x : � · x = 0}.
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Advantages of AdaBoost

Simple: straightforward implementation.

Efficient: complexity              for stumps:

• when    and    are not too large, the algorithm is 
quite fast.

Theoretical guarantees: but still many questions.

• AdaBoost not designed to maximize margin.

• regularized versions of AdaBoost.

O(mNT )

N T
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Weaker Aspects

Parameters:

• need to determine   , the number of rounds of 
boosting: stopping criterion.

• need to determine base learners: risk of 
overfitting or low margins.

Noise: severely damages the accuracy of Adaboost 
(Dietterich, 2000).

T
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Other Boosting Algorithms

arc-gv (Breiman, 1996): designed to maximize the 
margin, but outperformed by AdaBoost in 
experiments (Reyzin and Schapire, 2006).

L1-regularized AdaBoost (Raetsch et al., 2001): 
outperfoms AdaBoost in experiments (Cortes et al., 

2014). 

DeepBoost (Cortes et al., 2014): more favorable 
learning guarantees, outperforms both AdaBoost 
and L1-regularized AdaBoost in experiments.

39
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