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Motivation
With an infinite hypothesis set   , the error bounds 
of the previous lecture are not informative.

Is efficient learning from a finite sample possible 
when    is infinite?

Our example of axis-aligned rectangles shows that 
it is possible.

Can we reduce the infinite case to a finite set? 
Project over finite samples?

Are there useful measures of complexity for 
infinite hypothesis sets?
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Empirical Rademacher Complexity

Definition:

•    family of functions mapping from set    to       .

• sample                      .

•      (Rademacher variables): independent uniform
random variables taking values in             .
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Rademacher Complexity

Definitions: let    be a family of functions mapping 
from    to       .

• Empirical Rademacher complexity of    :

• Rademacher complexity of    :
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Rademacher Complexity Bound

Theorem: Let    be a family of functions mapping 
from    to       . Then, for any       , with probability 
at least       , the following holds for all        :

Proof: Apply McDiarmid’s inequality to
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• Changing one point of   changes        by at most 

• Thus, by McDiarmid’s inequality, with probability at
least 

• We are left with bounding the expectation.
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• Series of observations:
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• Now, changing one point of   makes          vary by 
at most    . Thus, again by McDiarmid’s inequality, 
with probability at least         ,

• Thus, by the union bound, with probability at
least       ,
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Loss Functions - Hypothesis Set

Proposition: Let    be a family of functions taking 
values in             ,     the family of zero-one loss
functions of   :                                           Then,

Proof:
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Generalization Bounds - Rademacher

Corollary: Let    be a family of functions taking 
values in             . Then, for any       , with
probability at least       , for any        ,
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Remarks

First bound distribution-dependent, second data-
dependent bound, which makes them attractive.

But, how do we compute the empirical Rademacher 
complexity?

Computing                                requires 
solving ERM problems, typically computationally 
hard.

Relation with combinatorial measures easier to 
compute?

12

E�[suph�H
1
m

�m
i=1 �ih(xi)]



page

This lecture

Rademacher complexity

Growth Function

VC dimension

Lower bound

13



page

Growth Function

Definition: the growth function               for a 
hypothesis set    is defined by

Thus,           is the maximum number of ways    
points can be classified using   .
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Massart’s Lemma

Theorem: Let            be a finite set, with                 , 
then, the following holds:

Proof:
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• Taking the log yields:

• Minimizing the bound by choosing                 
gives
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Growth Function Bound on Rad. Complexity

Corollary: Let    be a family of functions taking 
values in             , then the following holds:

Proof:
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Generalization Bound - Growth Function

Corollary: Let    be a family of functions taking 
values in             . Then, for any       , with 
probability at least       , for any        ,

But, how do we compute the growth function? 
Relationship with the VC-dimension (Vapnik-
Chervonenkis dimension).
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VC Dimension

Definition: the VC-dimension of a hypothesis set    
is defined by

Thus, the VC-dimension is the size of the largest set 
that can be fully shattered by   .

Purely combinatorial notion.
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(Vapnik & Chervonenkis, 1968-1971; Vapnik, 1982, 1995, 1998)
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Examples

In the following, we determine the VC dimension 
for several hypothesis sets.

To give a lower bound   for                , it suffices 
to show that a set   of cardinality   can be 
shattered by   .

To give an upper bound, we need to prove that no 
set    of cardinality       can be shattered by   ,
which is typically more difficult.
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Intervals of The Real Line

Observations:

• Any set of two points can be shattered by four
intervals

• No set of three points can be shattered since
the following dichotomy “+ - +” is not realizable
(by definition of intervals):

• Thus,                                   .

+ - +

- - + -

+ +

- +

22

VCdim(intervals in R)=2
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Hyperplanes

Observations:

• Any three non-collinear points can be shattered:

• Unrealizable dichotomies for four points:

• Thus,                                             .

+
+

-

+

+
--

+

+
-

+

23

VCdim(hyperplanes in Rd)=d+1
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Axis-Aligned Rectangles in the Plane

Observations:

• The following four points can be shattered:

• No set of five points can be shattered: label
negatively the point that is not near the sides.

• Thus,                                               .
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Convex Polygons in the Plane

Observations:

•         points on a circle can be shattered by a d-gon:

• It can be shown that choosing the points on the
circle maximizes the number of possible
dichotomies. Thus,                                          .
Also,                                           .
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+

+
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|positive points| < |negative points| |positive points| > |negative points|
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2d+1

VCdim(convex d-gons)=2d+1
VCdim(convex polygons)=+�
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Sine Functions

Observations:

• Any finite set of points on the real line can be
shattered by                             .

• Thus, 
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{t ⇤�sin(�t) : � ⇥ R}
VCdim(sine functions)=+�.
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Sauer’s Lemma

Theorem: let    be a hypothesis set with            
then, for all         ,

Proof: the proof is by induction on        . The 
statement clearly holds for         and        or       . 
Assume that it holds for                  and             .

• Fix a set                        with           dichotomies 
and let            be the set of concepts    induces 
by restriction to   .
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• Consider the following families over                       : 

• Observe that
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x1 x2 · · · xm�1 xm

· · · · · · · · · · · · · · ·

1 1 0 1 0
1 1 0 1 1
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S⇥={x1, . . . , xm�1}

G1 =G|S� G2 ={g� � S� : (g� ⇥ G) ⌅ (g� ⇤ {xm} ⇥ G)}.

|G1| + |G2| = |G|.
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• Since                      , by the induction hypothesis,

• By definition of     , if a set         is shattered by    , 
then the set             is shattered by   . Thus, 

• Thus,

29

VCdim(G1)�d

G2 G2

Z�{xm} G
Z�S�

VCdim(G2) ⇥ VCdim(G)� 1 = d� 1

and by the induction hypothesis, 

|G| �
⇤d

i=0

�
m�1

i

⇥
+

⇤d�1
i=0

�
m�1

i

⇥

=
⇤d

i=0

�m�1
i

⇥
+

�m�1
i�1

⇥
=

⇤d
i=0

�m
i

⇥
.

|G1| � �G1(m� 1) �
d�

i=0

�
m� 1

i

�
.

|G2| � �G2(m� 1) �
d�1�

i=0

�
m� 1

i

�
.



page

Sauer’s Lemma - Consequence

Corollary: let    be a hypothesis set with           
then, for all         ,

Proof:
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Remarks

Remarkable property of growth function:

• either                              and                      

• or                              and                  .
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VCdim(H)=d<+� �H(m)=O(md)

VCdim(H)=+� �H(m)=2m
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Generalization Bound - VC Dimension

Corollary: Let    be a family of functions taking 
values in              with VC dimension   . Then, for 
any       , with probability at least       , for any        ,

Proof: Corollary combined with Sauer’s lemma.
Note: The general form of the result is
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Comparison - Standard VC Bound

Theorem: Let    be a family of functions taking 
values in              with VC dimension   . Then, for
any       , with probability at least       , for any        ,

Proof: Derived from growth function bound
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VCDim Lower Bound - Realizable Case

Theorem: let    be a hypothesis set with VC 
dimension       . Then, for any learning algorithm   ,

Proof: choose    such that   can do no better than 
tossing a coin for some points. 

• Let                               be a set fully shattered. 
For any       , define    with support    by
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• We can assume without loss of generality that   
makes no error on    .

• For a sample   , let   denote the set of its elements
falling in                            and let    be the set of 
samples of size    with at most              points in    .

• Fix a sample       . Using                           , 
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• Since the inequality holds for all       , it also holds in
expectation:                            . This implies that 
there exists a labeling    such that                        .

• Since                       , we also have                  . Thus,

• Collecting terms in                        , we obtain:

• Thus, the probability over all samples   (not
necessarily in   ) can be lower bounded as 
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• This leads us to seeking a lower bound for        . 
The probability that more than              points be 
drawn in a sample of size    verifies the Chernoff 
bound for any       :

• Thus, for                          and       ,
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Agnostic PAC Model

Definition: concept class    is PAC-learnable if there 
exists a learning algorithm   such that:

• for all                         and all distributions   ,

• for samples   of size                          for a fixed 
polynomial.
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Theorem: let    be a hypothesis set with VC 
dimension       . Then, for any learning algorithm  ,

Equivalently, for any learning algorithm, the sample 
complexity verifies
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VCDim Lower Bound - Non-Realizable Case

H
Ld>1

m � d

320�2
.

(Anthony and Bartlett, 1999)
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