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Motivation

Efficient computation of inner products in high 
dimension.

Non-linear decision boundary.

Non-vectorial inputs.

Flexible selection of more complex features.
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Non-Linear Separation

Linear separation impossible in most problems.

Non-linear mapping from input space to high-
dimensional feature space:                .

Generalization ability: independent of           , 
depends only on margin and sample size.
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Kernel Methods

Idea:

• Define                    , called kernel, such that:

•    often interpreted as a similarity measure.

Benefits:

• Efficiency:     is often more efficient to compute 
than    and the dot product.

• Flexibility:    can be chosen arbitrarily so long as 
the existence of    is guaranteed (PDS condition 
or Mercer’s condition).
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�(x) · �(y) = K(x, y).

K : X�X�R

K

K

�
K
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PDS Condition

Definition: a kernel                    is positive definite 
symmetric (PDS) if for any                        , the 
matrix                                      is symmetric 
positive semi-definite (SPSD).

    SPSD if symmetric and one of the 2 equiv. cond.’s:

• its eigenvalues are non-negative.

• for any             ,

Terminology: PDS for kernels, SPSD for kernel 
matrices (see (Berg et al., 1984)).
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{x1, . . . , xm}�X
K = [K(xi, xj)]ij � Rm�m

c�Rm�1

K

K: X�X�R

c�Kc =
m�

i,j=1

cicjK(xi, xj) � 0.



pageMehryar Mohri - Foundations of Machine Learning

Example - Polynomial Kernels

Definition:

Example: for         and        ,
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N =2 d=2

�x, y � RN , K(x, y) = (x · y + c)d, c > 0.
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Normalized Kernels

Definition: the normalized kernel     associated to a 
kernel    is defined by

• If    is PDS, then     is PDS:

• By definition, for all   with                ,
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K �

K

�x, x�� X , K �(x, x�)=

�
�

�
0 if (K(x, x) = 0) � (K(x�, x�) = 0)

K(x,x�)�
K(x,x)K(x�,x�)

otherwise.

K K �

m�

i,j=1

cicjK(xi, xj)�
K(xi, xi)K(xj , xj)

=
m�

i,j=1

cicj��(xi),�(xj)�
��(xi)�H ��(xj)�H

=

�����

m�

i=1

ci�(xi)
��(xi)�H

�����

2

H
�0.

x K(x, x) �=0
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Other Standard PDS Kernels

Gaussian kernels:

• Normalized kernel of

Sigmoid Kernels:
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K(x, y) = tanh(a(x · y) + b), a, b � 0.

K(x, y) = exp
�
� ||x� y||2

2�2

�
, � �= 0.

(x,x�) �� exp
�
x·x�

�2

�
.
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Reproducing Kernel Hilbert Space

Theorem: Let                    be a PDS kernel. Then, 
there exists a Hilbert space    and a mapping      
from    to    such that

Proof: For any        , define                    as follows:

• Let 

• We are going to define an inner product      on    .
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K: X�X�R
H �

X H

�x, y � X, K(x, y) = �(x) · �(y).

x�X

�y � X, �(x)(y) = K(x, y).

�·, ·� H0

(Aronszajn, 1950)

�(x) : X�RX

H0 =
��

i�I

ai�(xi) : ai � R, xi � X, card(I)<�
�

.
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     is a PDS kernel on     .

• Definition: for any                       ,                      , 

•      does not depend on representations of   and  . 

•      is bilinear and symmetric.

•      is positive semi-definite since    is PDS: for any  ,

• note: for any               and               ,
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�f, g� =
�

i�I,j�J

aibjK(xi, yj) =
�

j�J

bjf(yj) =
�

i�I

aig(xi).

f g

�f, f� =
�

i,j�I

aiajK(xi, xj) � 0.

K

m�

i,j=1

cicj�fi, fj� =
� m�

i=1

cifi,
m�

j=1

cjfj

�
� 0.

f =
�

i�I ai�(xi)

�·, ·�

�·, ·� f

f1, . . . , fm c1, . . . , cm

�·, ·� H0

g =
�

j�J

bj�(yj)

�·, ·�
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•      is definite:

• first, Cauchy-Schwarz inequality for PDS kernels. 
If    is PDS,                             is SPSD for all           
In particular, the product of its eigenvalues,           
is non-negative:

• since      is a PDS kernel, for any          and        ,

• observe the reproducing property of      :

• Thus,                               for all        , which 
shows the definiteness of      . 
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�·, ·�

K x, y�XM=
�

K(x,x) K(x,y)
K(y,x) K(y,y)

�

det(M)

det(M) = K(x, x)K(y, y)�K(x, y)2 � 0.

�·, ·� f �H0 x�X

�f, �(x)�2 � �f, f���(x), �(x)�.
�·, ·�

[f(x)]2��f, f�K(x, x) x�X

�·, ·�

8f 2 H0, 8x 2 X, f(x) =
X

i2I

aiK(xi, x) = hf,�(x)i.
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• Thus,       defines an inner product on    , which 
thereby becomes a pre-Hilbert space.

•     can be completed to form a Hilbert space    in 
which it is dense.

Notes:

•   is called the reproducing kernel Hilbert space 
(RKHS) associated to   .

• A Hilbert space such that there exists               
with                             for all            is also 
called a feature space associated to   .    is called 
a feature mapping.

• Feature spaces associated to    are in general not 
unique.
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�·, ·�

H0 H

H0

H
K

� : X�H
K(x, y)=�(x)·�(y) x, y�X

�K
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SVMs with PDS Kernels

Constrained optimization:

Solution:
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with for any    with
0<�i <C.

(Boser, Guyon, and Vapnik, 1992)

max
�

m�

i=1

�i �
1
2

m�

i,j=1

�i�jyiyjK(xi, xj)

subject to: 0 � �i � C �
m�

i=1

�iyi = 0, i � [1, m].

h(x) = sgn
� m�

i=1

�iyiK(xi, x) + b
�
,

b = yi �
m�

j=1

�jyjK(xj , xi) xi

�(xi)·�(xj)
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Rad. Complexity of Kernel-Based Hypotheses

Theorem: Let                    be a PDS kernel and     
let               be a feature mapping associated to   . 
Let                              be a sample of size    , and  
let                                          . Then,

Proof:
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K: X�X�R
K

m

�RS(H) �
�

�
Tr[K]
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� �

m
E
�

����
m�

i=1

�i�(xi)
���
�

(Jensen’s ineq.) � �
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=
�
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Tr[K]
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S�{x : K(x, x)�R2}
� :X!H

H={x 7! w·�(x) : kwkH⇤}
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Generalization: Representer Theorem

Theorem: Let                    be a PDS kernel with   
the corresponding RKHS. Then, for any non-
decreasing function             and any                     
problem
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(Kimeldorf and Wahba, 1971)

K: X�X�R H

G: R�R L: Rm�R�{+�}

admits a solution of the formh� =
m�

i=1

�iK(xi, ·).

If    is further assumed to be increasing, then any 
solution has this form.

G

argmin
h�H

F (h) = argmin
h�H

G(�h�H) + L
�
h(x1), . . . , h(xm)

�
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• Proof: let                                          . Any        
admits the decomposition                 according   
to                   .

• Since    is non-decreasing,

• By the reproducing property, for all            ,

• Thus,                                                               
and 

• If    is increasing, then                   when        
and any solution of the optimization problem 
must be in    .
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H1 =span({K(xi, ·): i� [1, m]}) h�H
h=h1 + h�

H =H1 �H�
1

G

i� [1, m]
h(xi) = �h, K(xi, ·)� = �h1, K(xi, ·)� = h1(xi).

L
�
h(x1), . . . , h(xm)

�
=L

�
h1(x1), . . . , h1(xm)

�

F (h1) � F (h).

G F (h1)<F (h)

H1

G(�h1�H) � G
��

�h1�2
H + �h��2

H

�
= G(�h�H).

h� �= 0
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Kernel-Based Algorithms

PDS kernels used to extend a variety of algorithms 
in classification and other areas:

• regression.

• ranking.

• dimensionality reduction.

• clustering.

But, how do we define PDS kernels?

20
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Closure Properties of PDS Kernels

Theorem: Positive definite symmetric (PDS) 
kernels are closed under:

• sum,

• product,

• tensor product,

• pointwise limit,

• composition with a power series with non-
negative coefficients.

22
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Closure Properties - Proof

Proof: closure under sum:

• closure under product:                 ,
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K = MM�

c�Kc � 0 � c�K�c � 0� c�(K + K�)c � 0.

mX

i,j=1

cicj(KijK
0
ij) =

mX

i,j=1

cicj

✓h mX

k=1

MikMjk

i
K0

ij

◆

=
mX

k=1

 mX

i,j=1

cicjMikMjkK
0
ij

�

=
mX

k=1

2

4
c1M1k

· · ·
cmMmk

3

5
>

K0

2

4
c1M1k

· · ·
cmMmk

3

5 � 0.
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• Closure under tensor product:

• definition: for all                       ,

• thus, PDS kernel as product of the kernels

• Closure under pointwise limit: if for all           ,

24

(x1, y1, x2, y2)� K1(x1, x2) (x1, y1, x2, y2)� K2(y1, y2).

(K1 �K2)(x1, y1, x2, y2) = K1(x1, x2)K2(y1, y2).

x1, x2, y1, y2�X

Then,

x, y�X

lim
n��

Kn(x, y) = K(x, y),

(�n, c�Knc�0)� lim
n��

c�Knc = c�Kc�0.
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• Closure under composition with power series:

• assumptions:    PDS kernel with                  for 
all           and                                   power 
series with radius of convergence  .

•        is a PDS kernel since      is PDS by closure 
under product,                  is PDS by closure 
under sum, and closure under pointwise limit.

Example: for any PDS kernel   ,           is PDS.

25

K |K(x, y)|<�
f(x)=

��
n=0 anxn, an�0

�

Knf �K

x, y�X

�N
n=0 anKn

K exp(K)
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Sequence Kernels

Definition: Kernels defined over pairs of strings.

• Motivation: computational biology, text and 
speech classification.

• Idea: two sequences are related when they share 
some common substrings or subsequences.

• Example: bigram kernel;

27

K(x, y) =

X

bigramu

count

x

(u)⇥ count

y

(u).
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Weighted Transducers

Sum of the weights of all accepting 
paths with input    and output   .

0

1a:b/0.1
2

a:b/0.5

b:a/0.2

a:a/0.4
3/0.1

b:a/0.3

b:a/0.6

28

T (x, y) =
x y

T (abb, baa) = .1� .2� .3� .1 + .5� .3� .6� .1
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Rational Kernels over Strings

Definition: a kernel                      is rational if    
for some weighted transducer   .

Definition: let                       and                       be 
two weighted transducers. Then, the composition 
of    and    is defined for all                   by

Definition: the inverse of a transducer                        
is the transducer                          obtained from    
by swapping input and output labels. 

(Cortes et al., 2004)
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K : ������R
T

K =T

T1 : ������R T2 : ������R

T1 T2 x���, y���

(T1 � T2)(x, y) =
�

z���

T1(x, z) T2(z, y).

T :������R
T�1 : ������R T
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PDS Rational Kernels 
General Construction

Theorem: for any weighted transducer                     ,                                 
the function                 is a PDS rational kernel.

Proof: by definition, for all             ,

•    is pointwise limit of             defined by 

•     is PDS since for any sample                 ,
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K =T �T�1

x, y � ��

T :������R

K(x, y) =
�

z���

T (x, z)T (y, z).

K (Kn)n�0

�x, y � ��, Kn(x, y) =
�

|z|�n

T (x, z)T (y, z).

Kn (x1, . . . , xm)
Kn = AA� with A = (Kn(xi, zj))i�[1,m]

j�[1,N ]

.
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PDS Sequence Kernels

PDS sequences kernels in computational biology, 
text classification, other applications:

• special instances of PDS rational kernels.

• PDS rational kernels easy to define and modify.

• single general algorithm for their computation: 
composition + shortest-distance computation.

• no need for a specific ‘dynamic-programming’ 
algorithm and proof for each kernel instance.

• general sub-family: based on counting 
transducers.

31
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Counting Transducers

X may be a string or an automaton 
representing a regular expression.

Counts of   in   : sum of the weights of 
accepting paths of          .

0

a:ε/1
b:ε/1

1/1X:X/1

a:ε/1
b:ε/1

bbabaabba

εεabεεεεε εεεεεabεε

32

X = ab

TX

Z =

Z X
Z � TX



pageMehryar Mohri - Foundations of Machine Learning

Transducer Counting Bigrams

0

a:ε/1
b:ε/1

1a:a/1
b:b/1

2/1a:a/1
b:b/1

a:ε/1
b:ε/1

33

Tbigram

Counts of   given by                    .Z Z � Tbigram � ab
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Transducer Counting Gappy Bigrams

0

a:ε/1
b:ε/1

1a:a/1
b:b/1

a:ε/λ
b:ε/λ

2/1a:a/1
b:b/1

a:ε/1
b:ε/1

34

Tgappy bigram

Counts of   given by                          ,
gap penalty            .

Z Z � Tgappy bigram � ab
��(0, 1)
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Composition

Theorem: the composition of two weighted 
transducer is also a weighted transducer.

Proof: constructive proof based on composition 
algorithm.

• states identified with pairs.

•  -free case: transitions defined by

• general case: use of intermediate  -filter.

35

�

�

E =
�

(q1,a,b,w1,q2)�E1
(q�

1,b,c,w2,q�
2)�E2

��
(q1, q

�
1), a, c, w1 � w2, (q2, q

�
2)

��
.
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Composition Algorithm 
ε-Free Case

36

0 1a:b/0.1
a:b/0.2

2b:b/0.3

3/0.7b:b/0.4

a:b/0.5

a:a/0.6

0 1b:b/0.1

b:a/0.2
2a:b/0.3

3/0.6a:b/0.4

b:a/0.5

(0, 0) (1, 1)a:b/.01

(0, 1)a:a/.04

(2, 1)b:a/.06 (3, 1)

b:a/.08

a:a/.02

a:a/0.1

(3, 2)
a:b/.18

(3, 3)/.42

a:b/.24

Complexity:                 in general, linear in some cases.O(|T1| |T2|)
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Redundant ε-Paths Problem

37

a:a b:! c:! d:d

a:d !:e d:a

a:d !1:e d:a

!2:! !2:! !2:! !2:!

!:!1

a:a b:!2 c:!2 d:d

!:!1 !:!1 !:!1 !:!1

0 1 2 3 4

0 1 2 3

0 1 2 3

0 1 2 3 4

(a)

(b)

(c)

(d)

A

B

A'

B'

0,0 1,1 1,2

2,1 2,2

3,1 3,2

4,3

a:d !:e

b:!

c:!

b:!

c:!

!:e

!:e

d:a

b:e

(x:x) (!1:!1)

(!1:!1)

(!1:!1)

(!2:!2)(!2:!2)

(!2:!2) (!2:!2)

(x:x)

(!2:!1)

0�

x:x

!2:!1
1�

!1:!1

2�

!2:!2

x:x

!1:!1

x:x

!2:!2

0

ε:ε1ε:ε1

1
a:a

ε:ε1ε:ε1

2
b:ε2

ε:ε1ε:ε1

3
c:ε2

ε:ε1ε:ε1

4
d:d

ε:ε1ε:ε1

0

ε2:ε

1
a:d

ε2:ε

2
ε1:       e

ε2:ε

3
d:a

ε2:ε

T̃1 T̃2

0 1a:a 2b:ε 3c:ε 4d:d
0 1

a:d
2

ε:e
3

d:aT1 T2

0

x:x

ε2:ε1
1

ε1:ε1

2

ε2:ε2

x:x

ε1:ε1

x:x

ε2:ε2
F

T = T̃1 ◦ F ◦ T̃2.

(MM, Pereira, and Riley, 1996; Pereira and Riley, 1997)
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Kernels for Other Discrete Structures

Similarly, PDS kernels can be defined on other 
discrete structures:

• Images,

• graphs,

• parse trees,

• automata,

• weighted automata.

38
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Questions

Gaussian kernels have the form              where   is 
a metric.

• for what other functions   does              define a 
PDS kernel?

• what other PDS kernels can we construct from a 
metric in a Hilbert space?

40

exp(�d2) d

d exp(�d2)
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Negative Definite Kernels

Definition: A function                    is said to be a 
negative definite symmetric (NDS) kernel if it is 
symmetric and if for all                        and                          
with           ,

Clearly, if     is PDS, then      is NDS, but the 
converse does not hold in general.

(Schoenberg, 1938)

41

K: X�X�R

{x1, . . . , xm}�X c�Rm�1

1�c=0
c�Kc � 0.

K �K
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Examples

The squared distance             in a Hilbert space    
defines an NDS kernel. If                ,

42

||x� y||2 H�m
i=1 ci =0

m�

i,j=1

cicj ||xi � xj ||2 =
m�

i,j=1

cicj(xi � xj) · (xi � xj)

=
m�

i,j=1

cicj(�xi�2 + �xj�2 � 2xi · xj)

=
m�

i,j=1

cicj(�xi�2 + �xj�2)� 2
m�

i=1

cixi ·
m�

j=1

cjxj

�
m�

i,j=1

cicj(�xi�2 + �xj�2)

=
m�

j=1

cj

� m�

i=1

ci(�xi�2
�

+
m�

i=1

ci

� m�

j=1

cj�xj�2
�

= 0.
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NDS Kernels - Property

Theorem: Let                    be an NDS kernel such 
that for all          ,                iff         . Then, there 
exists a Hilbert space    and a mapping                 
such that

Thus, under the hypothesis of the theorem,       
defines a metric.

√

K

H

(Schoenberg, 1938)

43

K: X�X�R
x, y�XK(x, y)=0 x = y

�: X�H

∀x, y ∈ X, K(x, y) = ∥Φ(x) − Φ(y)∥2.
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PDS and NDS Kernels

Theorem: let                    be a symmetric kernel, 
then:

•    is NDS iff               is a PDS kernel for all       .

• Let     be defined for any     by

(Schoenberg, 1938)
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K: X�X�R

K exp(�tK) t>0
x0K �

K �(x, y) = K(x, x0) + K(y, x0)�K(x, y)�K(x0, x0)

for all            . Then,    is NDS iff     is PDS.x, y�X K K �
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Example

The kernel defined by                                           
is PDS for all        since             is NDS.

The kernel                     is not PDS for        . 
Otherwise, for any       ,                        and

This would imply that            is NDS for       , but 
that cannot be (see past homework assignments). 
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K(x, y) = exp(�t||x� y||2)
t>0 ||x� y||2

exp(�|x� y|p) p>2
t>0 {x1, . . . , xm}�X c�Rm�1

m�

i,j=1

cicje
�t|xi�xj |p =

m�

i,j=1

cicje
�|t1/pxi�t1/pxj |p � 0.

|x� y|p p>2
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Conclusion

PDS kernels:

• rich mathematical theory and foundation.

• general idea for extending many linear 
algorithms to non-linear prediction.

• flexible method: any PDS kernel can be used.

• widely used in modern algorithms and 
applications.

• can we further learn a PDS kernel and a 
hypothesis based on that kernel from labeled 
data? (see tutorial: http://www.cs.nyu.edu/~mohri/icml2011-

tutorial/).
46
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Mercer’s Condition

Theorem: Let          be a compact subset of      and 
let                     be in                 and symmetric. 
Then,    admits a uniformly convergent expansion

(Mercer, 1909)
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K : X�X�R
X�X

K

K(x, y) =
��

n=0

an�n(x)�n(y), with an > 0,

� �

X�X
c(x)c(y)K(x, y)dxdy � 0.

iff for any function   in         ,c L2(X)

RN

L�(X�X)
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SVMs with PDS Kernels

Constrained optimization:

Solution:
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with for any    with
0<�i <C.

xi

max
�

2 1��� (� � y)�K(� � y)

subject to: 0 � � � C ���y = 0.

b = yi � (� � y)�Kei

Hadamard product

h = sgn
� m�

i=1

�iyiK(xi, ·) + b
�
,


