Foundations of Machine Learning
Kernel Methods



Motivation

| Efficient computation of inner products in high
dimension.

B Non-linear decision boundary.
® Non-vectorial inputs.

B Flexible selection of more complex features.
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Non-Linear Separation

B |inear separation impossible in most problems.

® Non-linear mapping from input space to high-
dimensional feature space: ¢: X — F.

® Generalization ability: independent of dim(F'),
depends only on margin and sample size.



Kernel Methods

B |dea:
® Define K: X x X —R, called kernel, such that:
O(z) - 2(y) = K(z,y).
® K often interpreted as a similarity measure.

B Benefits:

® FEfficiency: K is often more efficient to compute
than & and the dot product.

® Flexibility: K can be chosen arbitrarily so long as
the existence of ® is guaranteed (PDS condition
or Mercer’s condition).



PDS Condition

B Definition:a kernel K: X x X — R is positive definite
symmetric (PDS) if for any {z1,...,z,} C X, the
matrix K = [K(z;,x,)];; € R™*™ is symmetric
positive semi-definite (SPSD).

B K SPSD if symmetric and one of the 2 equiv. cond’s:

® its eigenvalues are non-negative.
m
e for any ce R™*1 c'Kec = Z ciciK(z;,x;) > 0.
i, j=1
B Terminology: PDS for kernels, SPSD for kernel
matrices (see (Berg et al., 1984)).



Example - Polynomial Kernels

B Definition:

Ve,y e RY, K(z,y) = (z-y+c)?, ¢

B Example:for N=2and d=2,

K(z,y) = (z1y1 + z2y2 + 0)2
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XOR Problem

B Use second-degree polynomial kernel with ¢ = 1:

XZ? \/§$1$2
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(-1,-1) (I,-1) (LL—v2,—v2,+v2,1) | (1,1, —V2,+v2,—v2,1)
Linearly non-separable Linearly separable by

L1Xo — 0.



Normalized Kernels

B Definition: the normalized kernel K’'associated to a
kernel Kis defined by

0 if (K(x,2)=0)V (K(2',2")=0)
Vo, 2'e X, K'(z,2") = K (w,a')
\/K(:I:,:B)K(ac’,a:’)

otherwise.

e |f Kis PDS, then K’ is PDS:

m

cic; K (x;, 1) Csz i), ®(z;))
2 VK (xi, 7)) K (x5, 2;) Z |D( HH||‘D(%)HH

® By definition, for all x with K (z, z) #0,
K'(z,z) =1.



Other Standard PDS Kernels

B Gaussian kernels:

r— ull2
Ko e (-LEEHE) o 20

202

® Normalized kernel of (x,x’) — exp (’“’2‘)

o

B Sigmoid Kernels:

K(xz,y) = tanh(a(x -y) +b), a,b> 0.



Reproducing Kernel Hilbert Space
(Aronszajn, 1950)

B Theorem:LetK: X xX —R be a PDS kernel.Then,

there exists a Hilbert space H and a mapping ®
from X to H such that

Ve,y € X, K(x,y) = ®(x) - P(y).

B Proof: For any z€ X, define®(x): X —R*as follows:
Vy e X, ®(z)(y) = K(z,y).

® LetH():{ Zaicb(azi): a; € R, x; € X, card(])<oo}.
iel
® We are going to define an inner product{., -)on H,.



® Definition:for anyf=>"._;a;®(x;),9 = Z b P(y;),

jEJ

<fag> — Z azb K %,yg Zb f y] Zazg(xz)

icI.jcJ jeJ iel
(-,-)does not depend on representations of fandg.

®
e (-,-)is bilinear and symmetric.

® (-,")is positive semi-definite since K is PDS: for any f,

(fs [) = Z a;a;K(x;,xj) > 0.

1,7€1

® note:forany fi,..., fmand ci,...,cm,
Z CZC]<fZ7fJ <Zczfzaz >
ij=1 i—1 j=1

—> (-, -)is a PDS kernel on Hj.



® (-, )is definite:

® first, Cauchy-Schwarz inequality for PDS kernels.

f 1cis PDS, M= ( £("%) 1) ) is SPSD for alln, y € X

In particular, the product of its eigenvalues, det(IM)
IS hon-negative:

det(M) = K (z,2)K (y,y) — K(z,y)* > 0.
since(-,-)is a PDS kernel, for any f € Hy andz <€ X,
(f, @(2))* < (f, F){(@(x), B(2)).
® observe the reproducing property of (-, -):

Vf e HyVrelX, f(z)= ZCMLK(ZE@,SB) = ([, ®(x)).
o Thus,(f(2)2< (f, f)K (z, ) for allz € X, which
shows the definiteness of (-, .).



® Thus, (-, )defines an inner product on Hy, which
thereby becomes a pre-Hilbert space.

® Hycan be completed to form a Hilbert space H in
which it is dense.

A Notes:

® [1is called the reproducing kernel Hilbert space
(RKHS) associated to K.

® A Hilbert space such that there exists ®: X — H
with K (z,y)=®(z)-®(y) for allz,yc X is also
called a feature space associated to K. ® is called
a feature mapping.

® Feature spaces associated to K are in general not
unique.
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SVMs with PDS Kernels

(Boser, Guyon, and Vapnik, 1992)

® Constrained optimization:
O(w)- O(x;)

max Zaz — = Z ozzozjyzyj

Z]—

subject to: 0 < a; < C A Zaiyi = 0,7 € [1,m].
i=1
& Solution:

h(x) =
withb = y; — Z ozjyj for any x; with

j=1 O<a;<C.



Rad. Complexity of Kernel-Based Hypotheses

B Theorem:LetK: X xX —R be a PDS kernel and
let &: X —H be a feature mapping associated to K.
Let SC{z: K(x,7) < R*}be a sample of size m, and
let H={x— w-®(z): ||w|lg<A}.Then,

]; _H Em:()'zq)(ilfz)
=1




Generalization: Representer Theorem

(Kimeldorf and Wahba, 1971)
B Theorem:LetK: X xX —R be a PDS kernel with H
the corresponding RKHS. Then, for any non-

decreasing functionG: R—Rand any L: R™ — RU{+o0}
problem

argmin F'(h) = argmin G(||h||x) + L(h(xl), e h(lﬁm))
heH heH

admits a solution of the formh* = Z a; K(x;,-)

If G is further assumed to be | mcreasmg, then any
solution has this form.



® Proof:let Hy =span({K(x;,-):i€[l,m]}).Anyhe H
admits the decompositionh="h; + h— according
tOH:Hl $ Hf_

Since G is non-decreasing,

G(lImll) < G(\JIIml + 1B413) = G(IR]m).

By the reproducing property, for all i €[1, m|,
h(z;) = (h, K(xi,-)) = (h1, K(2i,-)) = ha(2:).

ThUS,L(h(CL‘l), Ceey h(:l?m)) :L(hl (5131), Ceey hl (:E‘m))

If G is increasing, then F(h,) < F(h) when h™- # 0
and any solution of the optimization problem
must be in H;.




Kernel-Based Algorithms

B PDS kernels used to extend a variety of algorithms
in classification and other areas:

® regression.
® ranking.
® dimensionality reduction.

® clustering.

B But, how do we define PDS kernels?
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Closure Properties of PDS Kernels

B Theorem: Positive definite symmetric (PDS)
kernels are closed under:

® sum,

® product,

® tensor product,

® pointwise limit,

® composition with a power series with non-
negative coefficients.



Closure Properties - Proof

B Proof: closure under sum:
c' Kc>0Ac'Ke>0=c'(K+K')c>0.

® closure under product: K = MM ',

m
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® Closure under tensor product:

® definition: for all 1, z2,y1,y2 € X,
(K1 ® K2) (21, Y1, %2, Y2) = Ki(21, 22) K2(y1, y2)-
® thus, PDS kernel as product of the kernels
(1,91, %2, y2) — Ki(21,22) (21,91, 22,92) — K2(y1, y2)-
® Closure under pointwise limit: if for all z,y € X,
lim K,(x,y) = K(z,y),
n— oo

Then, (Vn, CTKncZO) = lim ¢' K, c =c' Ke¢>0.

n—oo



® Closure under composition with power series:

® assumptions: K PDS kernel with|K(x,y)| < p for
all z,ye Xand f(z)=>""", anx™, a, >0power
series with radius of convergencep.

® foKis aPDS kernel since K™is PDS by closure
under product,>)"_ a, K" is PDS by closure
under sum, and closure under pointwise limit.

B Example: for any PDS kernel K, exp(K)is PDS.
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Sequence Kernels

B Definition: Kernels defined over pairs of strings.

® Motivation: computational biology, text and
speech classification.

® |dea: two sequences are related when they share
some common substrings or subsequences.

® Example: bigram kernel;

K(x,y) = Z count, (u) x count, (u).

bigram u



Weighted Transducers

T(x,y) = Sum of the weights of all accepting
paths with input x and output y.

T(abb,baa) =.1x 2x.3x.14+.5x.3x.6x.1



Rational Kernels over Strings
(Cortes et al., 2004)

B Definition:a kernel K : X* xYX*—Ris rational if K =T
for some weighted transducer 7.

B Definition:letTy: X* xA*—>RandTh: A* xQ* —R be
two weighted transducers. Then, the composition
of Tyand Tsis defined for all z €3, y € Q" by

(TyoTo)(z,y) = ¥ Ti(w,2) Ta(z,y).
zEA*

B Definition: the inverse of a transducer7:Y* x A* —R
is the transducer 7 ': A* xY* — R obtained fromT
by swapping input and output labels.



PDS Rational Kernels
General Construction

B Theorem:for any weighted transducer7: ¥* x ¥* — R,
the function K =ToT 'is a PDS rational kernel.

B Proof: by definition, for all z,y € X7,
ry) = Y T(z,2)T(y, )
ZzEA*
® K is pointwise limit of( n)n>0 defined by

Ve,ye ¥, K ZTmz ,2).

1z|<n
e K, is PDS since for any sample (z1, ..., %),

K, =AA" with A = (K, (z:,2}))ic[1.m]-
je[1,N]



PDS Sequence Kernels

® PDS sequences kernels in computational biology,
text classification, other applications:

® special instances of PDS rational kernels.
® PDS rational kernels easy to define and modify.

® single general algorithm for their computation:
composition + shortest-distance computation.

® no need for a specific ‘dynamic-programming’
algorithm and proof for each kernel instance.

® general sub-family: based on counting
transducers.



Counting Transducers

bZS/l b18/1 X _ ab
a.e/l
m Z = bbabaabba
0 X:X/l» / \
ccabeeeee  egeeeeabes

® X may be a string or an automaton
representing a regular expression.

I'x

B Counts of Zin X: sum of the weights of
accepting paths of Z o T'x.



Transducer Counting Bigrams

b:e/1 b:e/1

Tbigram

Counts of Zgiven by Z o Tiigram © ab.



Transducer Counting Gappy Bigrams

b:e/1 b:e/A b:e/1

a:a/l a:a/l

1

Tgappy bigram

Counts of Zgiven by Z o Tyappy bigram © ab,
gap penalty e (0,1).



Composition

B Theorem: the composition of two weighted
transducer is also a weighted transducer.

B Proof: constructive proof based on composition
algorithm.
® states identified with pairs.
® c-free case: transitions defined by

b= H'J {((Chaq/l)?a?C?wl sza(CD,CIé))}-

(QJ_ 7a7b7w17QQ)€E1
/
(q]_ abac7w27qg)€E2

® general case: use of intermediate e-filter.



Composition Algorithm
€-Free Case

a:b/.18
@ a:b/.0 Q ba/O_(i a:a/0. !. o
a:

b:a/.08

Complexity: O(|T1||Tz]) in general, linear in some cases.



Redundant €-Paths Problem

(MM, Pereira, and Riley, 1996; Pereira and Riley, 1997)




Kernels for Other Discrete Structures

® Similarly, PDS kernels can be defined on other
discrete structures:

® |mages,

® graphs,

® parse trees,
® automata,

® weighted automata.
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Questions

®m Gaussian kernels have the form exp(—d?)whered is
a metric.

e for what other functions d does exp(—d?) define a
PDS kernel?

® what other PDS kernels can we construct from a
metric in a Hilbert space?



Negative Definite Kernels

(Schoenberg, 1938)

B Definition:A function K: X x X —R is said to be a
negative definite symmetric (NDS) kernel if it is
symmetric and if for all{z1,...,2,,} C Xand ce R™*!

withl'c=0,
c'Kc <0.

B Clearly, if K is PDS, then— K is NDS, but the
converse does not hold in general.



Examples

® The squared distance||z — y||? in a Hilbert space H
defines an NDS kernel. If}"." , ¢, =0,

m
S cicslbx x5l = 3 ez — x5) - (3 — %)

,7=1 i,j=1

m
= > cci(lxill? + x5 = 2% - x;)
1,7=1

m m

- Z cics([[xil1* + [[%411%) _QZCzXz ZCJXJ

1,7=1

m

= Z cics(IIxill* + I 1%)



NDS Kernels - Property
(Schoenberg, 1938)
B Theorem:LetK: X x X —R be an NDS kernel such
that for allz,y€ X K(x,y)=0iff x = y . Then, there
exists a Hilbert space H and a mapping ®: X — H
such that

Vr,y € X, K(z,y) = ||®(z) — ()"

Thus, under the hypothesis of the theorem,V K
defines a metric.



PDS and NDS Kernels

(Schoenberg, 1938)
B Theorem:let K: X x X — R be a symmetric kernel,
then:

® Kis NDS iff exp(—tK)is a PDS kernel for all t >0.
® |Let K'be defined for any o by
K'(z,y) = K(z,20) + K(y,z0) — K(2,y) — K(z0, o)
for allx, y € X.Then,K is NDS iff K’ is PDS.



Example

B The kernel defined by K (z,y) = exp(—t||z — y||*)
is PDS for all >0 since ||z — y||?is NDS.

B The kernel exp(—|z — y|?)is not PDS for p>2.

Otherwise, for any ¢t >0,{x1, ..., 2, } C Xand ce R
1 1
Z Cz'Cje_t'xi_xﬂp — Z cicje_“ Pr,—t /' Px;|P > 0.

® This would imply that |z — y|? is NDS for p> 2, but
that cannot be (see past homework assignments).



Conclusion

B PDS kernels:

rich mathematical theory and foundation.

general idea for extending many linear
algorithms to non-linear prediction.

flexible method: any PDS kernel can be used.

widely used in modern algorithms and
applications.

can we further learn a PDS kernel and a
hypothesis based on that kernel from labeled
data? (see tutorial: http://www.cs.nyu.edu/~mohri/icml|201 | -
tutorial/).
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Appendix



Mercer’s Condition
(Mercer, 1909)

B Theorem:Let X x X be a compact subset of R" and
let K: X x X —R bein L, (X x X)and symmetric.
Then, Kadmits a uniformly convergent expansion

@)

K(2,9) = Y andn(@)6n(y), with a, >0,

n=0

iff for any function c in Ly (X),

//XXX c(z)e(y)K(z, y)dzdy = 0.



SVMs with PDS Kernels

B Constrained optimization: Hadamard product

max 2 1'a — (aoy) ' K(a dy)

(81

subject to: 0 < a < C A aTy = (.
B Solution:

_ sgn(Zazyz (4,-) + b)

with b = y; — (a oy)'Ke; for any z;with
O<a; <C.



