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Binary Classification Problem

Training data: sample drawn i.i.d. from set    
according to some distribution   ,

Problem: find hypothesis                        in 
(classifier) with small generalization error       .

• choice of hypothesis set    : learning guarantees
of previous lecture.

 linear classification (hyperplanes) if 
dimension    is not too large.
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h :X ��{�1, +1} H

S =((x1, y1), . . . , (xm, ym)) � X�{�1, +1}.

X�RN

D

R(h)
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Support Vector Machines - separable case

Support Vector Machines - non-separable case

Margin guarantees

This Lecture
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Linear Separation

• classifiers:                                                       .

• geometric margin:

• which separating hyperplane?

4

H ={x ��sgn(w · x + b) :w � RN, b � R}

w·x+b=0

margin

⇢ = mini2[1,m]
|w·xi+b|

kwk .
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Optimal Hyperplane: Max. Margin

5

(Vapnik and Chervonenkis, 1965)

margin

w·x+b=+1
w·x+b=�1

w·x+b=0

⇢ = max

w,b : yi(w·xi+b)�0
min

i2[1,m]

|w · xi + b|
kwk .
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Maximum Margin

6

⇢ = max

w,b : yi(w·xi+b)�0
min

i2[1,m]

|w · xi + b|
kwk

= max

w,b : yi(w·xi+b)�0
mini2[1,m] |w·xi+b|=1

min

i2[1,m]

|w·xi + b|
kwk (scale-invariance)

= max

w,b : yi(w·xi+b)�0
mini2[1,m] |w·xi+b|=1

1

kwk

= max

w,b : yi(w·xi+b)�1

1

kwk . (min. reached)
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Optimization Problem

Constrained optimization:

Properties:

• Convex optimization.

• Unique solution for linearly separable sample.

7

min
w,b

1
2
�w�2

subject to yi(w · xi + b) � 1, i � [1, m].



page

Optimal Hyperplane Equations

Lagrangian: for all

KKT conditions:

8

L(w, b, �) =
1
2
�w�2 �

m�

i=1

�i[yi(w · xi + b)� 1].

�i � [1, m], �i[yi(w · xi + b)� 1] = 0.

�wL = w �
m�

i=1

�iyixi = 0 �� w =
m�

i=1

�iyixi.

�bL = �
m�

i=1

�iyi = 0 ��
m�

i=1

�iyi = 0.

w, b, �i�0,
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Support Vectors

Complementarity conditions:

Support vectors: vectors     such that

• Note: support vectors are not unique.

9

�i �= 0 � yi(w · xi + b) = 1.

xi

�i[yi(w · xi + b)� 1] = 0 =� �i = 0 � yi(w · xi + b) = 1.
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Moving to The Dual

Plugging in the expression of    in    gives:

Thus,

10

Lw

L =
m�

i=1

�i �
1
2

m�

i,j=1

�i�jyiyj(xi · xj).

L =
1

2

����
mX

i=1

↵iyixi

����
2

�
mX

i,j=1

↵i↵jyiyj(xi · xj)

| {z }
� 1

2

Pm
i,j=1 ↵i↵jyiyj(xi·xj)

�
mX

i=1

↵iyib

| {z }
0

+
mX

i=1

↵i.
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Equivalent Dual Opt. Problem

Constrained optimization:

Solution:

11

for any SV    .

h(x) = sgn
� m�

i=1

�iyi(xi · x) + b
�
,

b = yi �
m�

j=1

�jyj(xj · xi) xiwith

max
�

m�

i=1

�i �
1
2

m�

i,j=1

�i�jyiyj(xi · xj)

subject to: �i � 0 �
m�

i=1

�iyi = 0, i � [1, m].
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Leave-One-Out Error

Definition: let     be the hypothesis output by 
learning algorithm    after receiving sample   of 
size   . Then, the leave-one-out error of    over   
is:

Property: unbiased estimate of expected error of 
hypothesis trained on sample of size        ,

12

hS

L S

m L S

�Rloo(L) =
1
m

m�

i=1

1hS�{xi}(xi) �=f(xi).

m�1

E
S�Dm

[ �Rloo(L)]=
1
m

m�

i=1

E
S
[1hS�{xi}(xi) �=f(xi)]=E

S
[1hS�{x}(x) �=f(x)]

= E
S��Dm�1

[ E
x�D

[1hS�(x) �=f(x)]] = E
S��Dm�1

[R(hS�)].



page

Leave-One-Out Analysis

Theorem: let     be the optimal hyperplane for a 
sample   and let            be the number of support 
vectors defining    . Then,

Proof: Let              be a sample linearly separable 
and let        . If           misclassifies   , then   must 
be a SV for    . Thus,

13

hS

S NSV(S)

hS

x x

E
S�Dm

[R(hS)] � E
S�Dm+1

�
NSV(S)
m + 1

�
.

S�Dm+1

x�S
hS

hS�{x}

�Rloo(opt.-hyp.) � NSV(S)
m + 1

.
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Notes

Bound on expectation of error only, not the 
probability of error.

Argument based on sparsity (number of support 
vectors). We will see later other arguments in 
support of the optimal hyperplanes based on the 
concept of margin.

14
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Support Vector Machines - separable case

Support Vector Machines - non-separable case

Margin guarantees

This Lecture
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Support Vector Machines

Problem: data often not linearly separable in 
practice. For any hyperplane, there exists    such 
that

Idea: relax constraints using slack variables   

16

(Cortes and Vapnik, 1995)

xi

yi [w · xi + b] �� 1.

yi [w · xi + b] � 1� �i.

�i�0
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Support vectors: points along the margin or outliers.
Soft margin:

Soft-Margin Hyperplanes

17

ξi

ξj
w·x+b=+1

w·x+b=�1

w·x+b=0

� = 1/�w�.
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Optimization Problem

Constrained optimization:

Properties:

•         trade-off parameter.

• Convex optimization.

• Unique solution.

18

min
w,b,�

1
2
�w�2 + C

m�

i=1

�i

subject to yi(w · xi + b) � 1� �i � �i � 0, i � [1, m].

C�0

(Cortes and Vapnik, 1995)
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Notes

Parameter    : trade-off between maximizing margin 
and minimizing training error. How do we 
determine    ?

The general problem of determining a hyperplane 
minimizing the error on the training set is NP-
complete (as a function of the dimension).

Other convex functions of the slack variables 
could be used: this choice and a similar one with 
squared slack variables lead to a convenient 
formulation and solution.

19

C

C
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SVM - Equivalent Problem

Optimization:

Loss functions:

• hinge loss:

• quadratic hinge loss:

20

min
w,b

1
2
�w�2 + C

m�

i=1

�
1� yi(w · xi + b)

�

+
.

L(h(x), y) = (1 � yh(x))+.

L(h(x), y) = (1 � yh(x))2+.
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Hinge Loss

21

0/1 loss function

Hinge loss

‘Quadratic’ hinge loss

ξ1

�2
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SVMs Equations

Lagrangian: for all

KKT conditions:

22

w, b, �i�0, �i�0,

�wL = w �
m�

i=1

�iyixi = 0 �� w =
m�

i=1

�iyixi.

�bL = �
m�

i=1

�iyi = 0 ��
m�

i=1

�iyi = 0.

��iL = C � �i � �i = 0 �� �i + �i = C.

�i � [1, m], �i[yi(w · xi + b)� 1 + �i] = 0

�i�i = 0.

L(w, b, �, �, �) =
1
2
�w�2 +C

m�

i=1

�i�
m�

i=1

�i[yi(w ·xi + b)�1+ �i]�
m�

i=1

�i�i .
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Support Vectors

Complementarity conditions:

Support vectors: vectors     such that

• Note: support vectors are not unique.

23

xi

�i[yi(w · xi + b)� 1 + �i] = 0 =� �i = 0 � yi(w · xi + b) = 1� �i.

�i �= 0 � yi(w · xi + b) = 1� �i.
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Moving to The Dual

Plugging in the expression of    in    gives:

Thus,

The condition         is equivalent to 

24

w L

L =
m�

i=1

�i �
1
2

m�

i,j=1

�i�jyiyj(xi · xj).

�i�0 �i�C.

L =
1

2

����
mX

i=1

↵iyixi

����
2

�
mX

i,j=1

↵i↵jyiyj(xi · xj)

| {z }
� 1

2

Pm
i,j=1 ↵i↵jyiyj(xi·xj)

�
mX

i=1

↵iyib

| {z }
0

+
mX

i=1

↵i.
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Dual Optimization Problem

Constrained optimization:

Solution:

25

h(x) = sgn
� m�

i=1

�iyi(xi · x) + b
�
,

b = yi �
m�

j=1

�jyj(xj · xi)with for any    withxi

0<�i <C.

max
�

m�

i=1

�i �
1
2

m�

i,j=1

�i�jyiyj(xi · xj)

subject to: 0 � �i � C �
m�

i=1

�iyi = 0, i � [1, m].



page 26

Support Vector Machines - separable case

Support Vector Machines - non-separable case

Margin guarantees

This Lecture
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High-Dimension

Learning guarantees: for hyperplanes in dimension 
with probability at least        ,

• bound is uninformative for           .

• but SVMs have been remarkably successful in
high-dimension.

• can we provide a theoretical justification?

• analysis of underlying scoring function.

27

R(h)  bR(h) +

s
2(N + 1) log

em
N+1

m
+

s
log

1
�

2m
.

1� �

N � m

N
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Confidence Margin

Definition: the confidence margin of a real-valued 
function   at                   is                    .

• interpreted as the hypothesis’ confidence in
prediction.

• if correctly classified coincides with        .

• relationship with geometric margin for linear
functions                    : for   in the sample,

28

(x, y) 2 X ⇥ Y

|h(x)|

⇢h(x, y) = yh(x)h

h : x 7! w · x+ b

|⇢h(x, y)| � ⇢

geom

kwk.

x



page

Confidence Margin Loss

Definition: for any confidence margin parameter      
the  -margin loss function    is defined by

For a sample                       and real-valued 
hypothesis   , the empirical margin loss is

29

�>0

S =(x1, . . . , xm)
h

1

0 ρ 1

�R�(h) =
1
m

m�

i=1

��(yih(xi)) �
1
m

m�

i=1

1yih(xi)<�.

�⇢

yh(x)

�⇢(yh(x))

⇢
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General Margin Bound

Theorem: Let    be a set of real-valued functions. 
Fix       . For any       , with probability at least       , 
the following holds for all        :

Proof: Let                                          . Consider 
the family of functions taking values in       :

30

�>0 �>0 1��
H

h�H

R(h) � �R�(h) +
2
�

�RS

�
H

�
+ 3

�
log 2

�

2m
.

�H = {z=(x, y) ��yh(x) : h�H}

R(h) � �R�(h) +
2
�
Rm

�
H

�
+

�
log 1

�

2m

[0, 1]
�H = {�� � f : f � �H}.
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• By the theorem of Lecture 3, with probability at
least       , for all        ,

• Thus,

• Since     is   - Lipschitz, by Talagrand’s lemma,

• Since                             , this shows the first
statement, and similarly the second one.

31

1��

E[g(z)] � 1
m

m�

i=1

g(zi) + 2Rm( �H) +

�
log 1

�

2m
.

g� �H

E[��(yh(x))] � �R�(h) + 2Rm

�
�� � �H

�
+

�
log 1

�

2m
.

��
1
�

1yh(x)<0���(yh(x))

Rm

�
�� � �H

�
� 1

�
Rm( �H)=

1
�m

E
�,S

�
sup
h�H

m�

i=1

�iyih(xi)
�
=

1
�

Rm

�
H

�
.
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Rademacher Complexity of Linear Hypotheses

Theorem: Let                        be a sample of size    
and let                                   . Then, 

Proof:

32

�RS(H) �
�

R2�2

m
.

S�{x : �x��R}
H ={x �� w·x : �w���}

m

bRS(H) =
1

m
E
�


sup

kwk⇤

mX

i=1

�iw · xi

�
=

1

m
E
�


sup

kwk⇤
w ·

mX

i=1

�ixi

�

 ⇤

m
E
�

���
mX

i=1

�ixi

���
�
 ⇤

m


E
�

h���
mX

i=1

�ixi

���
2i�1/2

 ⇤

m


E
�

h mX

i=1

kxik2
i�1/2

 ⇤
p
mR2

m
=

r
R2⇤2

m
.
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Margin Bound - Linear Classifiers

Corollary: Let       and                                   . 
Assume that                        . Then, for any       , 
with probability at least       , for any        ,

Proof: Follows directly general margin bound and
bound on           for linear classifiers.

33

H ={x �� w·x : �w���}�>0
X�{x : �x��R} �>0

1�� h�H

R(h) � �R�(h) + 2

�
R2�2/�2

m
+ 3

�
log 2

�

2m
.

�RS

�
H

�
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High-Dimensional Feature Space

Observations:

• generalization bound does not depend on the
dimension but on the margin.

• this suggests seeking a large-margin hyperplane
in a higher-dimensional feature space.

Computational problems:

• taking dot products in a high-dimensional feature
space can be very costly.

• solution based on kernels (next lecture).

34
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Saddle Point
Let                   be the saddle point of the Langrangian. Multiplying 
both sides of the equation giving     by         and taking the sum leads 
to:

Using          ,                     , and                            yields

Thus, the margin is also given by:

α
∗

i
yi

37

m�

i=1

��
i yib =

m�

i=1

��
i y

2
i �

m�

i,j=1

��
i �

�
jyiyj(xi · xj).

�m
i=1 ��

i yi =0y2
i =1 w�=

�m
i=1 ��

i yixi

(w�, b�, ��)
b�

�2 =
1

�w��2
2

=
1

����1
.

0 =
m�

i=1

��
i � �w��2.
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Talagrand’s Contraction Lemma

Theorem: Let             be an   -Lipschitz function. 
Then, for any hypothesis set    of real-valued 
functions, 

Proof: fix sample                       . By definition, 

38

�: R�R
H
L

�RS(� �H) � L �RS(H).

(Ledoux and Talagrand, 1991; pp. 112-114)

S =(x1, . . . , xm)

with um�1(h)=
m�1�

i=1

�i(� � h)(xi).

RS(� � H) =
1
m

E
�

�
sup
h�H

m�

i=1

�i(� � h)(xi)
�

=
1
m

E
�1,...,�m�1

�
E
�m

�
sup
h�H

um�1(h) + �m(� � h)(xm)
��

,



page

Talagrand’s Contraction Lemma

Now, assuming that the suprema are reached, 
there exist               such that

39

h1, h2�H

E
�m

�
sup
h�H

um�1(h) + �m(� � h)(xm)
��

=
1
2
[um�1(h1) + (� � h1)(xm)] +

1
2
[um�1(h2)� (� � h2)(xm)]

� 1
2
[um�1(h1) + um�1(h2) + sL(h1(xm)� h2(xm))]

=
1
2
[um�1(h1) + sLh1(xm)] +

1
2
[um�1(h2)� sLh2(xm)]

� E
�m

�
sup
h�H

um�1(h) + �mLh(xm)
�
,

where s = sgn(h1(xm)� h2(xm)).
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Talagrand’s Contraction Lemma

When the suprema are not reached, the same can 
be shown modulo  , followed by        .

Proceeding similarly for other   s directly leads to 
the result.

40

�i

� ��0
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VC Dimension of Canonical Hyperplanes

Theorem: Let                       . Then, the VC 
dimension    of the set of canonical hyperplanes

Proof: Let                  be a set fully shattered. Then, 
for all                    , there exists    such

41

verifies

d � R2�2.

{x �� sgn(w · x) : min
x�S

|w · x| = 1 � �w� � �}

{x1, . . . ,xd}
y � {�1, +1}d w

�i � [1, d], 1 � yi(w · xi).

d
S�{x : �x��R}
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• Summing up the inequalities gives

• Taking the expectation over         (uniform) yields

• Thus,              .

42

y�U

d � w ·
d�

i=1

yixi � �w��
d�

i=1

yixi� � ��
d�

i=1

yixi�.

(Jensen’s ineq.)d � � E
y�U

[�
d�

i=1

yixi�] � �
�

E
y�U

[�
d�

i=1

yixi�2]
�1/2

= �
� d�

i,j=1

E[yiyj ](xi · xj)
�1/2

= �
� d�

i=1

(xi · xi)
�1/2 � �

�
dR2

�1/2 = �R
�

d.

�
d � �R


