Homework 1

CIS4930/5930

Due in-class, Friday Sep. 13

Instructions: Graduate students must complete all problems. Undergraduates may receive extra credit for working problems marked with (*). Show all work for full credit. Partial credit for incomplete / incorrect arguments will be given at the discretion of the instructor / TA.

- 1. (5 points) Greatest lower bound. A *lower bound* of a set $A \subseteq \mathbb{R}$ is a number γ such that for all $a \in A$, $\gamma \leq a$. The *infimum*, or greatest lower bound of A is a lower bound γ , such that for any lower bound γ' , it holds that $\gamma' \leq \gamma$. The notion of upper bound and least upper bound or supremum is defined analogously.
 - (1 point) Compute $\inf\{1/n : n \in \mathbb{N} \setminus \{0\}\}.$
 - (1 point) Compute $\sup\{1/n : n \in \mathbb{N} \setminus \{0\}\}$.
 - (3 points) Show that $\inf A = -\sup (\{-a : a \in A\}).$
- 2. (5 points) For binary classification with loss function $L(y',y)=1_{y'\neq y},$ recall that

$$noise(x) = \min\{Pr[1|x], Pr[0|x]\},\$$

and that the Bayes error R^* is defined by

$$R^* = \inf_h R(h).$$

Show that $E[noise(x)] = R^*$.

- 3. (2 points) Show that if $Pr[X \ge \epsilon] \le f(\epsilon)$ for some invertible function $f : \mathbb{R}_+ \to \mathbb{R}_+$, then, for any $\delta > 0$, with probability at least 1δ , $X \le f^{-1}(\delta)$.
- 4. (2 points) Prove Chebyshev's Inequality by following the outline in the slides for lecture 2 (σ^2 denotes the variance of the random variable X).
- 5. (5 points) MRT, exercise 2.2.
- 6. (*) (5 points) MRT, exercise 2.8