Counterfactual Regret Minimization

Solving Imperfect-Information Games

Intelligent Agents: Computational Game Solving

Today - Counterfactual Regret Minimization

Goal: Solve 2-player zero-sum imperfect-information games

Recall:

- ullet MWU/FPL: regret minimization in normal-form o converge to CCE
- ullet Extensive-form: exponentially many pure strategies o need structure

Today's plan:

- **①** Counterfactual reasoning: π_{-i}^{σ} weighting
- Regret decomposition over information sets
- Vanilla CFR algorithm + convergence
- Worked example: Kuhn poker
- Practical variants (CFR+, sampling)

Key insight: Regret decomposes across infosets; local RM at each I o global Nash

Setup Reminder

Extensive-form game:

- Histories $h \in \mathcal{H}$, terminal Z, utilities $u_i(z)$
- Player *i* information sets \mathcal{I}_i ; actions A(I) at infoset I
- Behavioral strategy $\sigma_i: \mathcal{I}_i \to \Delta(A(I))$
- Perfect recall: σ_i induces unique distribution over outcomes

What we want:

- $\bullet \ \, \mathsf{Two\text{-}player} \ \, \mathsf{zero\text{-}sum} \colon \, \mathsf{Nash} \ \, \mathsf{equilibrium} \ \, \Leftrightarrow \, \mathsf{minimax} \, \, \mathsf{solution} \, \,$
- Exploitability: $expl(\sigma_i) = max_{\sigma'_{-i}} u_{-i}(\sigma_i, \sigma'_{-i})$
- Goal: drive exploitability \rightarrow 0

Reach Probabilities

For profile $\sigma = (\sigma_1, \sigma_2)$ and history h:

$$\pi^{\sigma}(h) = \prod_{(I,a)\in h} \sigma_{
ho(I)}(I,a)$$

Decomposition:

$$\pi^{\sigma}(h) = \pi^{\sigma}_{c}(h) \cdot \pi^{\sigma}_{1}(h) \cdot \pi^{\sigma}_{2}(h)$$

- $\pi_c^{\sigma}(h)$: chance contribution
- $\pi_i^{\sigma}(h)$: player i's actions along h
- $\pi^{\sigma}_{-i}(h)$: opponent's actions

Extend to infosets: $\pi^{\sigma}(I) = \sum_{h \in I} \pi^{\sigma}(h)$

Why π_{-i} **matters:** Counterfactual = "if I reach I deterministically, what's my value?"

Counterfactual Values

Definition (Counterfactual value at infoset):

$$v_i^{\sigma}(I) = \sum_{h \in I} \frac{\pi^{\sigma}(h)}{\pi^{\sigma}(I)} \sum_{z \in Z, h \sqsubset z} \pi^{\sigma}(z \mid h) u_i(z)$$

Simpler form (using π_{-i} weighting):

$$v_i^{\sigma}(I) = \frac{1}{\pi^{\sigma}(I)} \sum_{h \in I, z \supseteq h} \pi_{-i}^{\sigma}(h) \, \pi^{\sigma}(h \to z) \, u_i(z)$$

Action-conditional:

 $v_i^{\sigma}(I,a) = \text{counterfactual value if we take action } a \text{ at } I$

$$v_i^{\sigma}(I) = \sum_{a \in A(I)} \sigma_i(I, a) v_i^{\sigma}(I, a)$$

Key: $v_i^{\sigma}(I,a)$ weights opponent reach π_{-i} , treats own reach as 1

Reach Probability Decomposition

Recall the reach probability factorization:

$$\pi^{\sigma}(h) = \pi^{\sigma}_{c}(h) \cdot \pi^{\sigma}_{i}(h) \cdot \pi^{\sigma}_{-i}(h)$$

and for an information set:

$$\pi^{\sigma}(I) = \sum_{h' \in I} \pi^{\sigma}(h') = \sum_{h' \in I} \pi^{\sigma}_{c}(h') \, \pi^{\sigma}_{i}(h') \, \pi^{\sigma}_{-i}(h')$$

Within one infoset:

$$\pi_c^{\sigma}(h) = \pi_c^{\sigma}(h'), \quad \pi_i^{\sigma}(h) = \pi_i^{\sigma}(h') \quad \forall h, h' \in I$$

(chance and player i made identical decisions to reach I).

Canceling Own Reach Within an Infoset

Normalized probability of a history $h \in I$:

$$\frac{\pi^{\sigma}(h)}{\pi^{\sigma}(I)} = \frac{\pi^{\sigma}_{c}(h)\pi^{\sigma}_{i}(h)\pi^{\sigma}_{-i}(h)}{\pi^{\sigma}_{c}(I)\pi^{\sigma}_{i}(I)\sum_{h'\in I}\pi^{\sigma}_{-i}(h')}$$

Since $\pi_c^{\sigma}(h) = \pi_c^{\sigma}(I)$ and $\pi_i^{\sigma}(h) = \pi_i^{\sigma}(I)$:

$$\frac{\pi^{\sigma}(h)}{\pi^{\sigma}(I)} = \frac{\pi^{\sigma}_{-i}(h)}{\sum_{h' \in I} \pi^{\sigma}_{-i}(h')}.$$

Substitute into value expression:

$$v_i^{\sigma}(I) = \sum_{h \in I} \frac{\pi_{-i}^{\sigma}(h)}{\sum_{h' \in I} \pi_{-i}^{\sigma}(h')} \sum_{z \succeq h} \pi^{\sigma}(z \mid h) u_i(z)$$

Own reach probabilities cancel—only opponents' reach remains.

Why This Matters for CFR

Key consequences of the counterfactual form:

- Opponent reach weights the regret: Regret at each I is scaled by $\pi^{\sigma}_{-i}(I)$.
- Clean regret decomposition:

$$R_{i}^{T} = \sum_{I \in \mathcal{I}_{i}} \sum_{t=1}^{T} \pi_{-i}^{t}(I) [v_{i}^{t}(I, a^{*}) - v_{i}^{t}(I)]$$

Regret can be minimized locally at each infoset.

Instantaneous & Cumulative Regret

At iteration t, profile σ^t , infoset $I \in \mathcal{I}_i$:

Instantaneous regret:

$$r^{t}(I,a) = v_{i}^{\sigma^{t}}(I,a) - v_{i}^{\sigma^{t}}(I)$$

Cumulative regret:

$$R^{T}(I,a) = \sum_{t=1}^{T} r^{t}(I,a)$$

Positive regret:

$$R^{T,+}(I,a) = \max\{R^T(I,a), 0\}$$

Why positive regret? Regret-matching only boosts actions we wish we'd played more

Regret Matching (RM)

Update rule at infoset l for iteration t + 1:

$$\sigma^{t+1}(I,a) = \begin{cases} \frac{R^{t,+}(I,a)}{\sum_{a' \in A(I)} R^{t,+}(I,a')} & \text{if denominator} > 0, \\ \text{uniform over } A(I) & \text{otherwise.} \end{cases}$$

Properties:

- Proven: $\operatorname{Regret}_{i}^{T} \leq \mathcal{O}(\sqrt{T|A(I)|})$ per infoset
- Simple, no learning rate tuning
- Local: each infoset independent

Average Strategy

Reach-weighted average:

$$\bar{\sigma}^{T}(I,a) = \frac{\sum_{t=1}^{T} \pi_{i}^{\sigma^{t}}(I) \sigma^{t}(I,a)}{\sum_{t=1}^{T} \pi_{i}^{\sigma^{t}}(I)}$$

Why weight by $\pi_i(I)$?

- Rarely-reached infosets matter less
- Matches the regret decomposition

Theorem (informal): If each player runs RM at every infoset, then

Exploitability
$$(\bar{\sigma}^T) = \mathcal{O}\left(\frac{\sqrt{|I||A|}}{\sqrt{T}}\right)$$

for two-player zero-sum games.

CFR Algorithm (Vanilla)

```
1: Initialize R^0(I,a) \leftarrow 0 for all I,a
 2: for t = 1 ... T do
         for each player i do
              Compute \sigma_i^t via RM from R^{t-1}
 5:
         end for
         Walk game tree: compute v_i^{\sigma^t}(I,a) for all I,a
      for each infoset / do
             r^t(I,a) \leftarrow v_i^{\sigma^t}(I,a) - v_i^{\sigma^t}(I)
              R^{t}(I,a) \leftarrow R^{t-1}(I,a) + r^{t}(I,a)
10:
        end for
         Accumulate \pi_i^{\sigma^t}(I)\sigma^t(I,a) for averaging
12: end for
13: return \bar{\sigma}^T
```

Complexity per iteration: O(|Z|) (one tree traversal)

Why Does CFR Work? (Proof Sketch)

Step 1: Regret decomposition

Player i's global regret against any fixed strategy σ_i^* :

$$\operatorname{Regret}_{i}^{T}(\sigma_{i}^{*}) = \sum_{I \in \mathcal{I}_{i}} \sum_{t=1}^{T} \pi^{\sigma_{-i}^{t}}(I) \Big[v_{i}^{\sigma^{t}}(I, a_{I}^{*}) - v_{i}^{\sigma^{t}}(I) \Big]$$

where a_I^* is action prescribed by σ_i^* at I.

Step 2: Local RM guarantees

Each infoset's cumulative regret $\leq \mathcal{O}(\sqrt{T})$

Step 3: Sum over infosets

$$\operatorname{Regret}_i^T \leq \sum_{I \in \mathcal{I}_i} \mathcal{O}(\sqrt{T|A(I)|}) \leq \mathcal{O}(|\mathcal{I}_i|\sqrt{T|A|})$$

Step 4: Two-player zero-sum

Nash \Leftrightarrow both players' average regret $\to 0 \Rightarrow$ exploitability $\mathcal{O}(1/\sqrt{T})_{\square}$

Convergence Statement

Theorem (Zinkevich et al. 2007):

In 2-player zero-sum games, if both players run CFR:

$$\text{Exploitability}(\bar{\sigma}_1^T) \leq \frac{\Delta_{\mathsf{max}} \sqrt{|\mathcal{I}_1||A|}}{\sqrt{T}}, \quad \text{Exploitability}(\bar{\sigma}_2^T) \leq \frac{\Delta_{\mathsf{max}} \sqrt{|\mathcal{I}_2||A|}}{\sqrt{T}}$$

where $\Delta_{\mathsf{max}} = \mathsf{max}_{\mathsf{z},\mathsf{z}'} \, |u_i(\mathsf{z}) - u_i(\mathsf{z}')|$.

Corollary: $\bar{\sigma}^T$ is an ϵ -Nash for $T = \mathcal{O}(1/\epsilon^2)$

Practical: Often converges much faster; modern variants (CFR+) empirically linear in T

CFR vs. Other Methods

Method	Regret per iter	Tree traver- sals	Memory	Notes
Vanilla CFR	$\mathcal{O}(1/\sqrt{T})$	1 full	$\mathcal{O}(\mathcal{I} A)$	Simple, determin
CFR+	$\sim \mathcal{O}(1/T)$ empirical	1 full	Same	Alternating updaggret floor
Monte Carlo CFR	Unbiased esti- mates	Samples	Same	Scales to huge ga
Policy-gradient (e.g., REINFORCE)	Variance issues	Full/sampled	Depends	Needs careful bas less theory

Why CFR dominates in poker: Exploits game structure, proven convergence, easy parallelization

Practical Variants – CFR+

CFR+ improvements (Tammelin 2014):

- **Q** Regret floor: $R^{t,+}(I,a) \leftarrow \max\{R^t(I,a),0\}$ stored (discard negatives)
- Alternating updates: only update one player per iteration
- **3 Linear weighting:** weight recent iterations more in $\bar{\sigma}^T$

Result: Empirical $\mathcal{O}(1/T)$ convergence in many games

One-line change:

$$R^{t}(I,a) \leftarrow \max \left\{ R^{t-1}(I,a) + r^{t}(I,a), 0 \right\}$$

Sampling Variants

Problem: Full tree traversal $\mathcal{O}(|Z|)$ intractable for large games

Solution: Sample outcomes, maintain unbiased CFV estimates

Types:

- Outcome sampling: sample one $z \sim \sigma^t$, update along that path
- External sampling: sample opponent & chance, enumerate own actions
- Chance sampling: sample chance, enumerate both players

Trade-off: Lower cost per iteration \leftrightarrow higher variance \rightarrow more iterations

Practical: External sampling very popular (e.g., Pluribus poker AI)

Abstraction & Large Games

Challenge: Real poker has $\sim 10^{161}$ states (Texas Hold'em)

Abstraction pipeline:

- **Action abstraction:** reduce bet sizes (e.g., fold/call/pot/2×pot)
- Information abstraction: cluster similar hands (e.g., EHS bucketing)
- Solve abstract game with CFR
- lacktriangledown Map real states o abstract infosets at runtime

Caveat: Abstraction introduces approximation error; recent work on end-to-end neural CFR

References: Johanson et al. (2013), Brown & Sandholm (2019 – Pluribus)

CFR vs. Policy Gradient in EFGs

Aspect	CFR	Policy Gradient (REINFORCE, PPO)	
Convergence	Proven $\mathcal{O}(1/\sqrt{T})$ for 2p-zs	No guarantees; can cycle or diverge	
Variance	Deterministic (full CFV)	High variance (Monte Carlo returns)	
Memory	$\mathcal{O}(\mathcal{I} A)$ explicit	Parameterized policy (can be smaller)	
Scalability	Needs abstraction for huge games	Function approx scales, but needs tricks	
Theory-practice gap	Tight	Large (needs baselines, entropy reg,)	

When to use CFR: Medium-large structured games (poker), want guarantees When to use PG: Gigantic state spaces, can tolerate sample inefficiency, or need online learning Hybrid: Neural CFR (DeepStack, ReBeL) – CFR-style updates with neural value nets

Worked Example: Kuhn Poker – Game Description

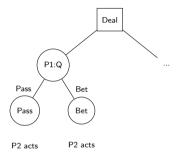
Kuhn Poker:

- Deck: {J, Q, K} (three cards)
- Two players, ante 1 chip each
- Each dealt one card (6 deal permutations, each prob 1/6)
- Round 1 (P1): Pass or Bet(1)
- Round 2 (P2): if P1 bet \rightarrow Call(1) or Fold; if P1 passed \rightarrow Pass or Bet(1)
- Round 3 (P1, after P2 bet): Call or Fold
- Showdown: higher card wins pot (or fold ends immediately)

Information sets (example for P1):

- J-start, Q-start, K-start (initial decision)
- J-P2bet, Q-P2bet, K-P2bet (after P1 passed, P2 bet)

Kuhn Poker – Game Tree (Simplified)



Focus: Infoset Q-start (P1 holds Queen at root)

Actions: Pass (p), Bet (b)

Kuhn Poker – Initial Strategy (Iteration 0)

Suppose uniform at all infosets:

- $\sigma_1^0(I, a) = 0.5$ for all $a \in \{ \text{Pass}, \text{Bet} \}$
- $\sigma_2^0(I, a) = 0.5$ for all $a \in \{ \text{Pass/Fold}, \text{Bet/Call} \}$

Goal: Compute counterfactual values at Q-start

Computing Counterfactual Values – Q-start

Infoset: P1 holds Q at root **Actions:** Pass (p), Bet (b)

Calculation sketch (P2 strategies matter):

For action **Pass**:

- P2 can hold J or K (each prob 1/2 given P1 has Q)
- ullet If P2-J: P2 passes w.p. 0.5
 ightarrow P1 wins 2; P2 bets w.p. 0.5
 ightarrow outcomes depend on P1's response
- If P2-K: similar branching...
- (Full computation omitted; representative value:)

$$v_1^{\sigma^0}(\mathtt{Q-start},\mathsf{Pass}) \approx +0.25$$

For action **Bet**:

- ullet P2-J folds w.p. 0.5
 ightarrow P1 wins 2; calls w.p. 0.5
 ightarrow P1 wins 3 total
- ullet P2-K folds w.p. 0.5
 ightarrow P1 wins 2; calls w.p. 0.5
 ightarrow P1 loses 3

$$v_1^{\sigma^0}(\mathtt{Q-start},\mathsf{Bet}) \approx +0.5$$

Instantaneous Regret at Q-start

Current value:

$$v_1^{\sigma^0}(t Q t - t start) = 0.5 imes 0.25 + 0.5 imes 0.5 = 0.375$$

Instantaneous regret:

$$r^0(Q-start, Pass) = 0.25 - 0.375 = -0.125$$

$$r^0(Q\text{-start}, Bet) = 0.5 - 0.375 = +0.125$$

Interpretation: We regret not betting more with Q

Cumulative Positive Regret & Next Strategy

Cumulative positive regret (after iteration 0):

$$R^{0,+}(Q\text{-start}, Pass) = \max\{-0.125, 0\} = 0$$

 $R^{0,+}(Q\text{-start}, Bet) = \max\{+0.125, 0\} = 0.125$

Regret Matching for iteration 1:

$$\sigma^1(Q extsf{-start}, \mathsf{Pass}) = rac{0}{0+0.125} = 0$$

$$\sigma^{1}(Q\text{-start}, \mathsf{Bet}) = \frac{0.125}{0 + 0.125} = 1.0$$

Interpretation: After one iteration, P1 with Q now always bets

Summary Table – One Iteration

Infoset	CFV		Regret Pass Bet		Next σ
	Pass	Bet	Pass	Bet	(Pass, Bet)
Q-start	0.25	0.50	-0.125	+0.125	(0.0, 1.0)

Key takeaway:

- CFR identifies that betting with Q is better than passing (under uniform opponent)
- Regret matching shifts all probability mass to the better action
- Over many iterations, strategies converge to Nash equilibrium

In-Class Exercise 1: Counterfactual vs. Expected Value

Setup: Consider infoset I for player 1. Current strategy profile σ has $\pi_1^{\sigma}(I) = 0.2$ and $\pi_2^{\sigma}(I) = 0.8$. The expected utility to P1 from I onward (given I is reached) is +3.

Questions:

- What weight does CFR use when computing $v_1^{\sigma}(I)$?
- ② If the actual reach probability $\pi^{\sigma}(I) = \pi_c \cdot \pi_1 \cdot \pi_2 = 0.05 \times 0.2 \times 0.8 = 0.008$, does this affect the counterfactual value?

Take 2 minutes to discuss with a neighbor.

Exercise 1 – Solution

Answers:

- CFR weights by $\pi_{-i}^{\sigma}(I) = \pi_2^{\sigma}(I) = 0.8$ (ignores π_1).
- ② No; counterfactual value normalizes by $\pi^{\sigma}(I)/\pi_{i}^{\sigma}(I)$, effectively treating $\pi_{i}=1$. The value remains +3 (or weighted appropriately by π_{-i} and chance, but not by own actions).

Key insight: Counterfactual reasoning asks "what if I deterministically reached this infoset?" – removes the effect of our own past actions.

In-Class Exercise 2: Regret Matching Calculation

Setup: Infoset I with 3 actions $\{a_1, a_2, a_3\}$. After 5 iterations, cumulative regrets are:

- $R^5(I, a_1) = +2.0$
- $R^5(I, a_2) = -0.5$
- $R^5(I, a_3) = +1.5$

Question: What is $\sigma^6(I,\cdot)$ using regret matching?

Take 2 minutes to compute.

Exercise 2 - Solution

Solution:

Positive regrets:

•
$$R^{5,+}(I,a_1)=2.0$$

•
$$R^{5,+}(I,a_2)=0$$

•
$$R^{5,+}(I,a_3)=1.5$$

$$Sum = 2.0 + 0 + 1.5 = 3.5$$

$$\sigma^{6}(I, a_{1}) = \frac{2.0}{3.5} = \frac{4}{7} \approx 0.571$$

$$\sigma^{6}(I, a_{2}) = 0$$

$$\sigma^{6}(I, a_{3}) = \frac{1.5}{3.5} = \frac{3}{7} \approx 0.429$$

In-Class Exercise 3: Why π_{-i} and not π_i ?

Thought experiment: Suppose we incorrectly computed counterfactual values weighting by $\pi_i^{\sigma}(I)$ instead of $\pi_{-i}^{\sigma}(I)$.

Question: What goes wrong with the regret decomposition?

Discuss for 2 minutes.

Exercise 3 – Solution

Answer:

The global regret decomposes as:

$$\operatorname{Regret}(\sigma_i^*) = \sum_{I} \sum_{t} \pi_{-i}^{\sigma^t}(I) \Big[v_i(I, a^*) - v_i(I) \Big]$$

The opponent's strategy π_{-i} weights how often they lead us to I. If we used π_i , we'd:

- Double-count our own choices (they're already in the strategy σ_i)
- Break the telescoping property linking infoset regrets to global regret

Key intuition: Counterfactual = "my value if I force myself to reach I, given opponent's play."

Summary

Today we covered:

- **① Counterfactual values:** weight by π_{-i} , not π_i
- Regret decomposition: global regret = sum of local regrets
- **③ Vanilla CFR:** regret matching at each infoset $\to \mathcal{O}(1/\sqrt{T})$ exploitability
- Wuhn poker example: one iteration of CFR in action
- Practical variants: CFR+, sampling, abstraction

Key takeaway: CFR exploits extensive-form structure to scale regret minimization to large imperfect-information games.

Next lecture: Extensions (Monte Carlo CFR, Neural CFR)

References & Further Reading

- **Zinkevich et al. (2007):** "Regret Minimization in Games with Incomplete Information" (original CFR paper)
- Tammelin (2014): "Solving Large Imperfect Information Games Using CFR+" (CFR+ variant)
- Lanctot et al. (2009): "Monte Carlo Sampling for Regret Minimization in Extensive Games" (sampling variants)
- Johanson et al. (2013): "Finding Optimal Abstract Strategies in Extensive-Form Games" (abstraction)
- Brown & Sandholm (2019): "Superhuman AI for multiplayer poker" (Pluribus, Science paper)
- Moravčík et al. (2017): "DeepStack: Expert-level artificial intelligence in heads-up no-limit poker" (neural CFR)

Open-source implementations:

- OpenSpiel (DeepMind): github.com/deepmind/open_spiel
- PokerRL: github.com/TinkeringCode/PokerRL