Opponent Modeling in Imperfect-Information EFGs

Ranges, Probabilistic Policies, and Posterior-Predictive Exploitation

Intelligent Agents: Computational Game Solving

November 13, 2025

Why Opponent Modeling? Where Are We Going?

Setting: Imperfect-information extensive-form games (poker-like). Opponents are *not* necessarily playing Nash.

What we want:

- Use observed actions to infer how the opponent plays (policy) and what they likely hold (range).
- Turn beliefs into *posterior-predictive* control: choose actions that increase EV against current opponent.
- Do this *online*, repeatedly, as the public state evolves.

Where we will get to (today):

- Formalize public belief states (PBS), ranges, and probabilistic policies.
- Fit opponent models (Dirichlet/tabular; softmax/parametric) from action data.
- Update ranges in PBS and compute best response in the current subgame to the *posterior-predictive* opponent.

Next (Lecture 2): Safe exploitation: Restricted Nash Response, robust blending, and re-solving constraints (control risk of model error).

| Control risk of model error | Constraints (control risk of model error) | Constraints (control risk o

2 / 40

Context: Robust Blueprint vs. Live Exploitation

Headline systems (Libratus, DeepStack, Pluribus): did *not* perform per-opponent modeling or targeted live exploitation.

- **Blueprint:** self-play CFR/LCFR to near-equilibrium in an abstraction.
- Ranges: Bayesian narrowing from public history (standard), not fitting opponent policies.
- **Real-time:** subgame re-solving (2p) or depth-limited search (6p) with safe/robust constraints.

Why avoid live exploitation:

- **Risk:** model error ⇒ increased exploitability (especially in multiplayer).
- Data sparsity/drift: few observations per infoset; opponent behavior changes.
- Complexity: 6-player "best response" notions are subtle; robustness wins.

Where exploitation appears:

- Controlled 2-player settings; Restricted Nash Response (RNR) and robust variants.
- Offline analysis/personalization; not typically used mid-match in production Als.

Roadmap

Today:

- Setup: public states, ranges, infosets (recap EFG notation)
- ② Two opponent model types: nonparametric (Dirichlet) and parametric (softmax)
- Why these models? (Bayesian smoothing; maximum entropy)
- Bayesian updates from observed actions
- Midden private states: marginalizing over opponent's hidden cards
- Range updates in public belief states (PBS)
- Using the model: posterior-predictive control and exploitation

Goal: From observations \Rightarrow beliefs \Rightarrow exploitative decisions (with safety next lecture).

Setup: Extensive-Form Notation (Recap)

- Histories $h \in \mathcal{H}$, terminals $z \in Z$, utility $u_i(z)$.
- Infosets \mathcal{I}_i for player i; actions A(I) at I.
- Strategy profile $\sigma = (\sigma_1, \sigma_2)$ (behavioral strategies).
- Reach prob. to h: $\pi^{\sigma}(h) = \pi^{\sigma}_{c}(h) \cdot \pi^{\sigma}_{1}(h) \cdot \pi^{\sigma}_{2}(h)$.
- Counterfactual values $v_i^{\sigma}(I, a)$, $v_i^{\sigma}(I)$ (CFR context).

New terminology for modeling:

- **Public state** *S*: shared observable history (public cards, bets, pot, stacks).
- **Private state** x: hidden info (e.g., opponent's hole cards).
- Range $\rho_{-i}(x \mid S)$: our belief distribution over opponent's private states at S.

Public Belief States (PBS)

Definition: Public state *S* partitions histories by shared observations. Within *S*, each player holds a *range* over private states:

$$\rho_i(x \mid S) = \text{probability player } i \text{ holds private state } x \text{ at } S$$

Example (poker):

- S: Flop is K \uparrow 7 \heartsuit 2 \clubsuit ; opponent has bet; pot = 40
- $\rho_{-i}(x \mid S)$: distribution over opponent's hole card pairs $x \in \{AA, KK, QQ, ..., 72o\}$
- Some x more likely given betting (e.g., opponent unlikely to hold 72o after betting)

Range evolution:

$$\rho_{-i}(x \mid S_{\text{new}}) \propto \rho_{-i}(x \mid S_{\text{prev}}) \cdot \text{Pr(observed action } | x, S, \sigma_{-i})$$

Use: Conditioning subgames (re-solving), counterfactual evaluation, exploitative play.

Opponent Modeling: What We Need

Two intertwined problems:

- **1. Policy modeling:** Infer $\sigma_{-i}(I, a)$ from observed actions
 - At each infoset *I*, what's the probability opponent plays action *a*?
 - Data: observed (I_t, a_t) pairs
- **2. Range tracking:** Update $\rho_{-i}(x \mid S)$ as actions are observed
 - Bayesian update: actions reveal information about private state x
 - Uses the policy model from (1) as the likelihood function
- **Output:** Posterior-predictive opponent policy $\hat{\sigma}_{-i}$ and updated range ρ_{-i}
- **Decision rule:** Compute our best response to $\hat{\sigma}_{-i}$ in current subgame

Two Approaches to Policy Modeling

Approach 1: Nonparametric (Dirichlet-Multinomial)

- Treat each infoset *I* independently
- Place a Dirichlet prior over action probabilities
- Update with observed counts: closed-form Bayesian posterior
- ullet Pro: Simple, exact, no hyperparameters (except prior lpha)
- Con: No sharing across infosets; data-hungry

Approach 2: Parametric (Softmax/Log-Linear)

- Model $\sigma_{-i}(I,a)$ with features f(I,a) and shared parameters θ
- Fit θ via maximum likelihood (gradient descent)
- Pro: Generalizes across infosets; data-efficient
- Con: Requires feature engineering; potential mis-specification

Often combined: Use parametric for well-observed infosets, Dirichlet for rare ones

Nonparametric Approach: Dirichlet Prior

Goal: Model opponent's action distribution at infoset *I* without features or parameters

Bayesian framework:

- **① Prior:** Opponent's policy $p(I, \cdot)$ at I is a probability vector over A(I)
- ② Place a distribution over this probability vector: $p(I,\cdot) \sim \text{Dirichlet}(\alpha(I,\cdot))$

The Dirichlet distribution:

- A distribution over the probability simplex: $\sum_a p(a) = 1$, $p(a) \ge 0$
- Parameterized by $\alpha = (\alpha_1, \dots, \alpha_K)$ where K = |A(I)|
- Prior mean: $\mathbb{E}[p(a)] = \alpha(a)/\alpha_0$ where $\alpha_0 = \sum_{a'} \alpha(a')$
- Concentration: larger $\alpha_0 = \text{stronger prior (more "pseudo-counts")}$

Intuition: $\alpha(I,a)$ acts like "pseudo-counts" — imaginary observations before seeing real data

Dirichlet Posterior After Observations

Observed data at infoset I: Counts n(I, a) for each action

Bayesian update (conjugacy):

- Prior: $p(I, \cdot) \sim \text{Dirichlet}(\alpha(I, \cdot))$
- Likelihood: multinomial with counts $n(I, \cdot)$
- Posterior: $p(I,\cdot) \mid n \sim \text{Dirichlet}(\alpha(I,\cdot) + n(I,\cdot))$

Posterior predictive policy (what we use for decisions):

$$\hat{\sigma}_{-i}(I,a) = \frac{\alpha(I,a) + n(I,a)}{\alpha_0 + N}$$

where $\alpha_0 = \sum_{a'} \alpha(I, a')$ and $N = \sum_{a'} n(I, a')$

Convex combination view:

$$\hat{\sigma}_{-i}(I,a) = \underbrace{\frac{\alpha_0}{\alpha_0 + N}}_{\text{prior weight}} \cdot \underbrace{\frac{\alpha(I,a)}{\alpha_0}}_{\text{prior mean}} + \underbrace{\frac{N}{\alpha_0 + N}}_{\text{data weight}} \cdot \underbrace{\frac{n(I,a)}{N}}_{\text{empirical freq}}$$

The Role of α (Prior Hyperparameters)

What does α do?

- 1. Smoothing: Prevents zero probabilities for unobserved actions
 - If n(I, a) = 0 but $\alpha(I, a) = 1$, then $\hat{\sigma}_{-i}(I, a) > 0$
 - Avoids division-by-zero in range updates; regularizes estimates
- 2. Prior beliefs: Encodes baseline policy before seeing data
 - Uniform prior: $\alpha(I, a) = c$ for all a (e.g., c = 1) no prior knowledge
 - Informative prior: $\alpha(I,a) = c \cdot \pi_0(a)$ encode equilibrium or baseline policy
- 3. Adaptation rate: Controls how quickly posterior moves from prior to data
 - Larger $\alpha_0 = \sum_a \alpha(a) \rightarrow \text{slower adaptation (prior dominates longer)}$
 - Smaller $\alpha_0 \rightarrow$ faster adaptation (data dominates sooner)
 - Think of α_0 as "equivalent sample size"

Not a restriction: α parameterizes a prior over all valid probability distributions.

Example: Dirichlet Update at an Infoset

Scenario: Infoset *I* with actions $A(I) = \{\text{check}, \text{bet}\}$

Prior: $\alpha(I, \text{check}) = 1$, $\alpha(I, \text{bet}) = 1$ (uniform; $\alpha_0 = 2$)

Observations: check, bet, check, bet \rightarrow counts n(check) = 2, n(bet) = 3, N = 5

Posterior predictive:

$$\hat{\sigma}_{-i}(I, \text{check}) = \frac{1+2}{2+5} = \frac{3}{7} \approx 0.43$$

$$\hat{\sigma}_{-i}(I, \mathsf{bet}) = \frac{1+3}{2+5} = \frac{4}{7} \approx 0.57$$

Compare to:

- Pure empirical frequency: check = 2/5 = 0.40, bet = 3/5 = 0.60
- Prior mean: check = 1/2 = 0.50, bet = 1/2 = 0.50
- Posterior is a blend (prior weight = $2/7 \approx 0.29$, data weight = $5/7 \approx 0.71$)

Dirichlet: Prior Fades with More Data

As observations accumulate, data dominates:

N (total obs)	Prior weight $\frac{\alpha_0}{\alpha_0+N}$	Data weight $\frac{N}{\alpha_0+N}$	Effect
0	2/2 = 1.0	0/2 = 0.0	Pure prior
5	$2/7 \approx 0.29$	$5/7 \approx 0.71$	Prior visible
50	$2/52 \approx 0.04$	$50/52 \approx 0.96$	Nearly empirical
500	$2/502 \approx 0.004$	$500/502 \approx 0.996$	empirical freq

Key insight: α matters most when data is sparse (early observations, rare infosets)

Practical choices:

- ullet Symmetric lpha=1: Laplace smoothing (add 1 to all counts)
- Informative $\alpha \propto \pi_{\rm NE}$: start with equilibrium baseline
- Larger α_0 : conservative (slow to trust new patterns)

Why Dirichlet? (Conjugacy Property)

Conjugacy: Prior and posterior are in the same family

Bayesian update:

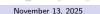
- **Prior**: $p \sim \text{Dirichlet}(\alpha)$
- **Likelihood:** Multinomial counts $n = (n_1, ..., n_K)$
- **Posterior:** $p \mid n \sim \text{Dirichlet}(\alpha + n)$

Benefits:

- Closed-form updates: No numerical optimization needed
- **② Fast online learning:** Add observed a to n(I, a) in O(1)
- **3** Uncertainty quantification: Posterior variance reflects confidence
- Sequential updating: Observe data incrementally, update on-the-fly

Alternative (non-conjugate): If we used different prior (e.g., Gaussian on logits), would need MCMC

or variational inference \rightarrow much slower



Parametric Approach: Softmax over Features

Motivation: Share information across infosets via features

Kev idea:

- Define features f(I, a) capturing properties of (infoset, action) pair
- Model action probability as softmax of linear score: $score(I, a) = \theta^{\top} f(I, a)$
- Fit global parameter θ from all observed (I_t, a_t) pairs

Benefits over Dirichlet:

- Pro: Generalizes to unobserved infosets (via features)
- Pro: Data-efficient (share statistical strength)
- Con: Requires feature engineering
- Con: Model mis-specification risk

When to use:

- Many infosets with sparse data per infoset
- Clear feature structure (hand strength, pot odds, position) Intelligent Agents: Computational Game Solving

November 13, 2025

Softmax Model: Definition

Model:

$$\sigma_{-i}(I, a; \theta) = \frac{\exp(\theta^{\top} f(I, a))}{\sum_{a' \in A(I)} \exp(\theta^{\top} f(I, a'))}$$

Components:

- $f(I, a) \in \mathbb{R}^d$: feature vector (hand strength, pot size, action type, ...)
- $oldsymbol{ heta} heta \in \mathbb{R}^d$: weight vector (parameters to learn)
- $\theta^{\top} f(I, a)$: linear score (higher score \rightarrow higher probability)
- Softmax: converts scores to valid probability distribution

Properties:

- ullet Always produces valid probabilities: $\sigma_{-i}(I,a) \in [0,1]$, $\sum_a \sigma_{-i}(I,a) = 1$
- Smooth: differentiable everywhere
- Temperature can be added: $\exp(\beta \theta^{\top} f)$ where β controls randomness

Why Softmax? Three Justifications

1. Multinomial logistic regression (statistical)

- Standard GLM for categorical outcomes with covariates
- ullet Convex negative log-likelihood o efficient optimization

2. Maximum entropy (information-theoretic)

- ullet Among all distributions matching $\mathbb{E}[f]=ar{f}$, softmax has max entropy
- Makes minimal additional assumptions beyond feature constraints

3. Random utility / Quantal response (decision-theoretic)

- Assume opponent chooses action maximizing: $U(I, a) = \theta^{\top} f(I, a) + \varepsilon_a$
- If ε_a are i.i.d. Gumbel noise, then $\Pr[a] = \operatorname{softmax}(\theta^{\top} f)$
- Interpretation: opponent is "noisy-rational" (higher-value actions more likely)

Bottom line: Softmax is a principled, tractable default for modeling action probabilities

Example Features f(I, a) for Poker

Common features for (infoset, action) pairs:

Hand/Board context:

- Hand strength proxy (if observable or estimated): EHS, pair indicator, draw indicator
- Position (button, big blind, small blind)
- Street (preflop=0, flop=1, turn=2, river=3)

Action properties:

- Action type: fold=0, check=0, call=1, bet=2, raise=3 (one-hot or ordinal)
- Bet size (if raise): fraction of pot, or absolute chips
- Aggression indicator: is this action aggressive (bet/raise) vs. passive (check/call)?

Pot/stack context:

- Pot odds: ratio of call amount to pot
- Stack-to-pot ratio (SPR): remaining stack / current pot

Fitting the Softmax Model: Maximum Likelihood

Data: Observed action sequences $\mathcal{D} = \{(I_1, a_1), (I_2, a_2), \dots, (I_T, a_T)\}$

Log-likelihood:

$$\ell(\theta) = \sum_{t=1}^{T} \log \sigma_{-i}(I_t, a_t; \theta)$$

Gradient (for SGD):

$$\nabla_{\theta}\ell(\theta) = \sum_{t} \left[f(I_{t}, a_{t}) - \sum_{a' \in A(I_{t})} \sigma_{-i}(I_{t}, a'; \theta) f(I_{t}, a') \right]$$

Interpretation:

- Observed action feature: $f(I_t, a_t)$ (push θ toward this)
- Expected feature under model: $\sum_{a'} \sigma_{-i}(I_t, a'; \theta) f(I_t, a')$ (pull back)
- Gradient = observed expected (match feature expectations)

Regularization: Add $-\lambda \|\theta\|^2$ to prevent overfitting; optimize via SGD/Adam $\to -2$ $\to -2$ $\to -2$ $\to -2$

Softmax: Optimization Details

Algorithm: Stochastic Gradient Descent (SGD)

- 1: Initialize $\theta^{(0)}$ (e.g., zeros or small random)
- 2: **for** epoch = 1...E **do**
- 3: **for** batch $\mathcal{B} \subset \mathcal{D}$ **do**

4:
$$g \leftarrow \sum_{(I,a)\in\mathcal{B}} \nabla_{\theta} \log \sigma_{-i}(I,a;\theta) - \lambda \theta$$

- 5: $\theta \leftarrow \theta + \eta g$
- 6: end for
- 7: end for

Practical notes:

- ullet Negative log-likelihood is convex in heta o converges to global optimum
- Online learning: refit θ periodically as new (I, a) observed
- Feature normalization: scale f(I, a) to similar ranges for numerical stability

 \triangleright learning rate n

Comparison: Dirichlet vs. Softmax

	Dirichlet (Nonparametric)	Softmax (Parametric)
Model	Independent per infoset	Shared $ heta$ across infosets
Updates	Closed-form (add counts)	Gradient descent (iterative)
Data needs	Requires observations at each I	Generalizes via features
Smoothing	Via prior α	Via regularization λ
Pros	Simple; exact Bayesian; no features needed	Data-efficient; generalizes
Cons	No sharing; sparse-data issues	Requires feature engineering
Best for	Small games; well-observed infosets	Large games; sparse infosets

Hybrid approach: Use softmax for common infosets, Dirichlet for rare ones

Hidden Private Information: The Challenge

Key difficulty in imperfect-information games:

We observe opponent's actions $(a_1, a_2, ...)$ but **not** their private state x (hole cards)

Why this matters:

- Opponent's infoset I(x) depends on their private state x
- ullet Different private states o different infosets o potentially different action distributions
- We don't know which x they have, so we don't know which I(x) they're at!

Example (poker):

- Public state S: Flop is $K \spadesuit 7 \heartsuit 2 \clubsuit$, opponent bets
- We observe: opponent chose "bet"
- But we don't see: opponent's hole cards (AA? KQ? 98s?)
- Their infoset I(x) differs for each holding x
- Each infoset may have different policy $\sigma_{-i}(I(x),\cdot)$

Question: How do we update our models when observations are partial?

Likelihood with Hidden Private States

Observation model: We observe action a_{obs} at public state S, but not opponent's x **Likelihood (marginalize over hidden** x):

$$Pr(a_{obs} \mid S, \theta) = \sum_{x \in \mathcal{X}(S)} \rho_{-i}(x \mid S) \cdot \sigma_{-i}(I(x), a_{obs}; \theta)$$

where:

- $\mathcal{X}(S) = \text{set of opponent private states consistent with public state } S$
- $\rho_{-i}(x \mid S)$ = our current range (belief over opponent's private state)
- I(x) = opponent's infoset given private state x and public state S
- $\sigma_{-i}(I(x), a_{\text{obs}}; \theta)$ = probability they play a_{obs} from infoset I(x)

Interpretation: Weighted average of action probabilities across possible private states

This is the likelihood for updating θ (parametric) or counts (Dirichlet) when x is latent

Two-Step Update Process

Step 1: Update policy model (from observed actions) Dirichlet:

- Which infoset was opponent at? Depends on hidden x
- Exact: Add fractional counts weighted by $\rho_{-i}(x \mid S)$ to each $n(I(x), a_{\text{obs}})$
- Approximate: If infoset doesn't strongly depend on x, treat as single I and add full count

Softmax:

- Likelihood: $\ell(\theta) = \sum_{t} \log \sum_{x} \rho_{-i}(x \mid S_t) \cdot \sigma_{-i}(I_t(x), a_t; \theta)$
- Optimize via EM or approximate gradient

Step 2: Update range $\rho_{-i}(x \mid S)$ using Bayes rule with the policy model

In practice: These steps are interleaved (online learning)

Range Update from Observed Action

Bayes rule for range:

$$\rho_{-i}(x \mid S, a_{\text{obs}}) \propto \rho_{-i}(x \mid S) \cdot \hat{\sigma}_{-i}(I(x), a_{\text{obs}})$$

Normalize over all $x \in \mathcal{X}(S)$ so probabilities sum to 1.

Step-by-step:

- **①** Start with prior range $\rho_{-i}(x \mid S)$ (from previous state)
- ② Observe action a_{obs} at public state S
- Second State St
 - Determine infoset I(x) opponent would be at
 - Look up $\hat{\sigma}_{-i}(I(x), a_{\text{obs}})$ from policy model
 - Multiply: $\rho_{-i}(x) \times \hat{\sigma}_{-i}(I(x), a_{\text{obs}})$
- Normalize to get posterior range

Interpretation: Private states that make a_{obs} more likely gain probability mass

November 13, 2025

Range Update Example

Scenario: Poker flop, opponent bets. What hands might they have?

Private x	Prior $\rho(x)$	$\hat{\sigma}(I(x), \text{bet})$	Unnorm. posterior	Normalized
AA (overpair)	0.20	0.90	$0.20 \times 0.90 = 0.18$	0.18/0.27 = 0.67
KQ (top pair)	0.30	0.60	$0.30 \times 0.60 = 0.18$	0.18/0.27 = 0.67
98s (draw)	0.30	0.40	$0.30 \times 0.40 = 0.12$	0.12/0.27 = 0.44
72o (nothing)	0.20	0.05	$0.20 \times 0.05 = 0.01$	0.01/0.27 = 0.04
		Sum	0.49	<u> </u>

Interpretation:

- AA and KQ gain probability (betting is consistent with strong hands)
- 720 loses probability (betting is unlikely with trash)
- Draw (98s) moderately consistent with betting (semi-bluff)

Updated range: $\rho_{-i}(x \mid S, \text{ bet observed})$ is now more concentrated on strong hands

Sequential Range Updates

Multiple observations across public states: $S_0 \to S_1 \to \ldots \to S_T$

Recursive Bayes rule:

$$\rho_{-i}(x \mid S_t) \propto \rho_{-i}(x \mid S_{t-1}) \cdot \hat{\sigma}_{-i}(I_t(x), a_t)$$

Chained form:

$$\rho_{-i}(x\mid S_T)\propto \rho_{-i}(x\mid S_0)\cdot \prod_{t=1}^T \hat{\sigma}_{-i}(I_t(x),a_t)$$

Interpretation:

- Each observed action is a "filter" on the range
- Private states consistent with all actions gain mass
- Private states inconsistent with observed play lose mass
- By showdown (river), range is highly concentrated

Use case: At decision point, use updated ρ_{-i} and $\hat{\sigma}_{-i}$ to compute BR in current subgame $\bar{\rho}_{-i}$

Practical Simplification: PBS-Conditional Models

Full latent-variable treatment is expensive (EM iterations, soft counts)

Approximation: Decouple policy learning and range tracking

- **① Policy model:** Fit $\sigma_{-i}(I,a)$ treating each observation as hard assignment to one infoset
 - Dirichlet: add full count $n(I, a_{obs}) \leftarrow n(I, a_{obs}) + 1$
 - Softmax: use observed (I_t, a_t) pairs directly in MLE
- **2** Range tracking: Update $\rho_{-i}(x \mid S)$ separately using the learned policy

$$\rho_{-i}(x \mid S_{\mathsf{new}}) \propto \rho_{-i}(x \mid S_{\mathsf{old}}) \cdot \hat{\sigma}_{-i}(I(x), a_{\mathsf{obs}})$$

When this works well:

- Infosets don't vary dramatically across private states within a PBS
- Or: use PBS-conditional models $\sigma_{-i}(I, a \mid S)$ that adapt to public context

Advantage: Simple, fast, modular (update policy and range independently)

EM-Style Updates (Optional Depth)

For completeness: Full latent-variable approach when I(x) strongly depends on x

E-step: Infer posterior over x given data and current $\theta^{(k)}$:

$$q^{(k)}(x) \propto \rho_{-i}(x \mid S) \cdot \prod_t \sigma_{-i}(I_t(x), a_t; \theta^{(k)})$$

M-step: Maximize expected log-likelihood:

$$\theta^{(k+1)} = \arg\max_{\theta} \sum_{x} q^{(k)}(x) \sum_{t} \log \sigma_{-i}(I_{t}(x), a_{t}; \theta) - \lambda \|\theta\|^{2}$$

Dirichlet version: Add fractional counts $n(I(x), a_t) \leftarrow n(I(x), a_t) + q^{(k)}(x)$

In practice: Often approximated by PBS-conditional updates (previous slide) or ignored when infoset dependence on x is weak

4□ > 4□ > 4□ > 4 = > 4 = > = 90

Posterior Predictive Opponent Policy

After updating from data, what policy do we use?

Dirichlet model:

$$\hat{\sigma}_{-i}(I,a) = \frac{\alpha(I,a) + n(I,a)}{\sum_{a'}(\alpha(I,a') + n(I,a'))}$$

Parametric model: Use fitted $\hat{\theta}$ (MLE or MAP):

$$\hat{\sigma}_{-i}(I, \mathbf{a}) = \sigma_{-i}(I, \mathbf{a}; \hat{\theta}) = \frac{\exp(\hat{\theta}^{\top} f(I, \mathbf{a}))}{\sum_{\mathbf{a}'} \exp(\hat{\theta}^{\top} f(I, \mathbf{a}'))}$$

This is the opponent model we use for:

- Computing best response in current subgame
- Updating ranges: $\rho_{-i}(x) \propto \rho_{-i}(x) \cdot \hat{\sigma}_{-i}(I(x), a_{\text{obs}})$
- Exploitative decision-making (maximizing EV vs. $\hat{\sigma}_{-i}$)

Using the Model: Posterior-Predictive Control

Decision rule: Compute our best response in current subgame to $\hat{\sigma}_{-i}$

Best response computation: Backward induction (single-agent DP on game tree)

- At terminal nodes: return payoff $u_i(z)$
- At chance nodes: expected value over chance distribution
- At opponent nodes: expected value w.r.t. $\hat{\sigma}_{-i}(I,\cdot)$

$$v_i(h) = \sum_{a \in A(I)} \hat{\sigma}_{-i}(I, a) \cdot v_i(h \cdot a)$$

• At our nodes: maximize over actions

$$v_i(h) = \max_{a \in A(I)} v_i(h \cdot a), \quad \mathsf{BR}(I) =_a v_i(h \cdot a)$$

Output: Pure (deterministic) action per infoset (or mixed if desired)

Time complexity: $\mathcal{O}(|Z_{\text{subgame}}|)$ (one tree traversal)

Preview: Robust Blending (Safety for Next Lecture)

Issue: Model error \Rightarrow over-exploitation risks making us exploitable

Blend opponent model with equilibrium baseline:

$$\sigma_{-i}^{\mathsf{blend}}(\mathit{I},\mathit{a}) = \lambda\,\hat{\sigma}_{-i}(\mathit{I},\mathit{a}) + (1-\lambda)\,\sigma_{-i}^{\mathsf{NE}}(\mathit{I},\mathit{a}), \quad \lambda \in [0,1]$$

where:

- $\hat{\sigma}_{-i}$: learned opponent model (Dirichlet or softmax)
- σ_{-i}^{NE} : equilibrium policy (from blueprint or known Nash)
- ullet λ : exploitation parameter (0 = pure equilibrium, 1 = pure exploitation)

Use: Compute BR to $\sigma_{-i}^{\text{blend}}$ for risk-controlled exploitation

Next lecture: Restricted Nash Response (RNR), safety constraints, robust optimization

Online Update Pipeline (Runtime)

At each decision point:

- **① Observe:** Public state S and opponent action a_{obs} at some infoset
- **②** Update policy model:
 - Dirichlet: increment $n(I, a_{obs})$ (possibly fractional if latent x)
 - ullet Softmax: add $(I, a_{
 m obs})$ to dataset; refit heta periodically
- Update range: Apply Bayes rule

$$\rho_{-i}(x \mid S_{\mathsf{new}}) \propto \rho_{-i}(x \mid S) \cdot \hat{\sigma}_{-i}(I(x), a_{\mathsf{obs}})$$

- **§** Form posterior-predictive policy: $\hat{\sigma}_{-i}$ across all infosets in current subgame
- **5** Compute decision: Best response to $\hat{\sigma}_{-i}$ in subgame (or blended policy)
- **6** Execute action: Play chosen action; update public state

Pseudocode: Online Opponent Modeling + Decision

```
1: function UPDATEANDDECIDE(S, a<sub>obs.</sub>, model)
          // Step 1: Update policy model
          if model.type == Dirichlet then
                Infer likely infosets from range and S
 5:
               n(I, a_{\text{obs}}) \leftarrow n(I, a_{\text{obs}}) + 1
                                                                                                                                           > or fractional
               \hat{\sigma}_{-i}(I,\cdot) \leftarrow (\alpha+n)/(\alpha_0+N)
 6:
          else
                                                                                                                                                ▶ Softmax
 8:
               Add (I, a_{obs}) to \mathcal{D}
 9:
               if time to refit then
                                                                                                                    ▷ periodic, e.g., every 100 obs
10:
                     \theta \leftarrow \mathsf{FitSoftmax}(\mathcal{D}) \text{ via SGD}
11:
               end if
12:
               \hat{\sigma}_{-i}(I,\cdot) \leftarrow \operatorname{softmax}(\theta^{\top}f(I,\cdot))
13:
           end if
          // Step 2: Update range via Bayes rule
14:
15:
           for each x \in \mathcal{X}(S) do
               \rho_{-i}(x) \leftarrow \rho_{-i}(x) \cdot \hat{\sigma}_{-i}(I(x), a_{\text{obs}})
16:
17:
           end for
18:
           Normalize \rho_{-i}
19:
           // Step 3: Compute exploitative action
```

November 13, 2025

Evaluating Opponent Models

How do we know if our model is good?

Metrics:

• Log-likelihood on held-out action sequences

$$\mathsf{Test\text{-}LL} = rac{1}{|\mathcal{D}_\mathsf{test}|} \sum_{(I,a) \in \mathcal{D}_\mathsf{test}} \log \hat{\sigma}_{-i}(I,a)$$

Higher is better (model assigns high probability to observed actions)

Cross-entropy / Perplexity:

$$\mathsf{Perplexity} = \mathsf{exp}(-\mathsf{Test}\mathsf{-LL})$$

Lower is better; measures "surprise" per decision

- Calibration: Compare predicted $\hat{\sigma}_{-i}(I,a)$ to empirical frequencies
 - Plot predicted prob vs. actual frequency (should lie on diagonal)

Diagnostic: High variance across PBS ⇒ use PBS-conditional models

Hierarchical Priors and Parameter Sharing

Motivation: Many infosets have little data; need to share information

Sharing schemes:

1. Group by PBS:

- Use same prior α for all infosets within a public state S
- Or same θ (softmax) with PBS-specific features

2. Feature-based sharing (softmax):

- Single global θ ; features f(I, a) adapt to context
- Automatically shares across similar (infoset, action) pairs

3. Hierarchical Bayesian (Dirichlet):

- Hyperprior on α : $\alpha \sim \text{Gamma}(...)$ or similar
- Partial pooling: infosets "borrow strength" from each other
- Requires inference (MCMC or variational)

Trade-off: More sharing \rightarrow more robust with sparse data, but less flexible per infoset.

Complexity and Data Requirements

Computational cost:

- **Dirichlet update:** $\mathcal{O}(1)$ per observation (just increment counts)
- **Softmax fit:** $\mathcal{O}(|\mathcal{D}| \cdot d \cdot |A|)$ per SGD epoch (d = feature dim)
- Range update: $\mathcal{O}(|\mathcal{X}(S)| \cdot |A|)$ (enumerate private states)
- Best response: $\mathcal{O}(|Z_{\text{subgame}}|)$ per decision

Data requirements:

- ullet Sparse infosets: need strong priors (lpha) or parameter sharing (heta)
- PBS-conditional aggregation reduces sparsity
- ullet Rule of thumb: \sim 10–100 observations per infoset for stable Dirichlet; fewer for softmax with good features

Memory:

- Dirichlet: store $\alpha(I, a)$ and n(I, a) for each (I, a) pair
- ullet Softmax: store $heta \in \mathbb{R}^d$ (much smaller if $d \ll |\mathcal{I}| imes |A|$)

Caveats and Pitfalls

- 1. Concept drift: Opponent changes strategy over time
 - Use forgetting factors: decay old counts/observations
 - Sliding window: only use recent *k* observations
 - Detect shifts: monitor likelihood or regret; reset model if needed
- 2. Exploration vs. exploitation: Need data to learn, but gathering data may be costly
 - Occasionally probe with unusual actions (exploration)
 - Safe blending (next lecture): hedge against model error

3. Model mis-specification:

- Wrong features (softmax) or wrong infoset grouping (Dirichlet)
- Diagnostics: poor test log-likelihood, miscalibration
- Remedies: better features, PBS conditioning, non-linear models (neural nets)

4. Abstraction mismatch:

- Infoset mapping differs between training and deployment
- Test cross-PBS and cross-abstraction robustness

Summary

Opponent modeling in imperfect-information EFGs:

Policy models:

- ullet Dirichlet: Bayesian per-infoset; lpha provides smoothing and prior beliefs; fast closed-form updates
- ullet Softmax: Feature-based sharing; heta learned via MLE; generalizes across infosets

Hidden private information:

- Observations reveal actions but not opponent's private state x
- Marginalize over x (exact EM) or approximate (PBS-conditional)

Range tracking:

- Update $\rho_{-i}(x \mid S)$ via Bayes rule using policy model
- Sequential filtering: $\rho \propto \rho_{\text{prev}} \times \hat{\sigma}_{-i}(I(x), a_{\text{obs}})$

Posterior-predictive control:

- Use $\hat{\sigma}_{-i}$ and ρ_{-i} to compute best response in current subgame
- Exploitative play vs. learned opponent

Next lecture: Safe exploitation (RNR, robust blending, constraints)

References

- Billings et al. (1998, 2002): Opponent modeling in poker (foundational work)
- Johanson & Bowling (2009): "Data Biased Robust Counter Strategies" (AISTATS) introduces Restricted Nash Response
- Ganzfried & Sandholm (2011): "Game Theory-Based Opponent Modeling in Large Imperfect-Information Games" (AAMAS)
- Brown & Sandholm (2017): "Safe and Nested Subgame Solving" (NIPS) re-solving context
- OpenSpiel documentation: PBS, ranges, best response implementations