From LP to Iterative Approaches

Scalability and Learning in Zero-Sum Games

WarmUp Review

Theorem 3.4.4 (Minimax theorem (von Neumann, 1928)) In any finite, two-player, zero-sum game, in any Nash equilibrium⁵ each player receives a payoff that is equal to both his maxmin value and his minmax value.

Definition 3.4.1 (Maxmin) The maxmin strategy for player i is $\arg\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$, and the maxmin value for player i is $\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$.

WarmUp Review

	图	CB	图
0.2 個	0	-1	+1
0.5	+1	0	-1
0.3	-1	+1	0

Correlated Equilibrium

- Mediator suggests actions to all players before play
- Correlated equilibrium if everyone is incentivized to take suggested action
- NE of stoplight game
 - Two pure strategy NE
 - Mixed NE: Go w/ prob.
 1/11
- Correlated equilibrium
 - Could suggest mixture of (Stop,Go) and (Go, Stop)

	Stop	Go
Stop	0, 0	0, 1
Go	1, 0	-10, -10

$$\mathbb{E}_{a \sim D}[u_i(a)] \ge \mathbb{E}_{a \sim D}[u_i(a_i', a_{-i})|a_i]$$

Maxmin Program & Dual

Maxmin / LP Properties

- Value of a game: Player 1's maxmin value
 - Well-defined, unique
 - Equilibrium mixed strategies not necessarily unique, though.
- Solvable in polynomial time

Maxmin / LP Properties

- Value of a game: Player 1's maxmin value
 - Well-defined, unique
 - Equilibrium mixed strategies not necessarily unique, though.
- Solvable in polynomial time
 - Q. Polynomial in what?

Maxmin / LP Properties

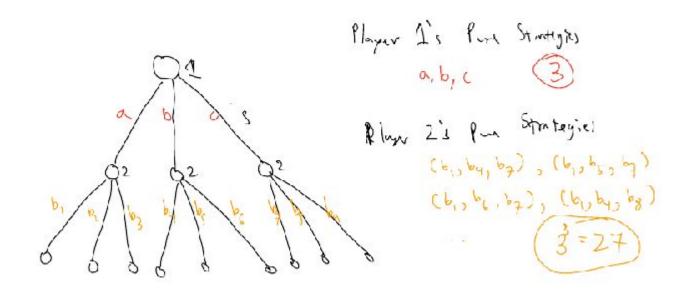
- Solvable in polynomial time
 - Q. Polynomial in what?
 - A. The size of the LP = number of variables and constraints + encoding length of coefficients
 - Modern interior point methods:
 - Roughly |LP|³

Game Representations

- Normal-Form:
 - Every players utility for every action profile is explicitly listed ("payoff matrix")
- A more practical representation: Extensive-Form (Game Tree)
 - Exponential blow-up when reduced to normal-form

- 1) Sequential rock-paper-scissors (toy example)
 - . Say Player 1 secretly chooses R/P/S. Player 2 then chooses R/P/S.
 - . Extensive form: 12 nodes
 - Normal form:
 - . P1 pure strategies: just R, P, S.
 - . P2 pure strategies: she must specify a move for every possible decision point $\rightarrow 3^3=27$
 - Thus, $|NF| = 27 \times 3$
 - . Blowup factor: 81 vs. 12

1) Sequential rock-paper-scissors (toy example)



- 2) Simple poker hand (<u>Kuhn poker</u>)
 - 2 players, 3-card deck, each antes 1 chip.
 - Tree size: ~12 decision nodes.
 - Normal form:
 - Each player's pure strategy specifies an action (bet/fold) at every information set.
 - Each has 4 information sets, so $\sim 2^4 = 16$ pure strategies each.
 - NF size: payoff matrix $16 \times 16 = 256$ entries.
 - Still solvable by hand, but you already see combinatorial growth.

- 3) Leduc poker (classic benchmark)
 - 2 players, 6-card deck (pairs + suits), structured betting.
 - Game tree: ~936 decision nodes.
 - Normal form:
 - Each player has to specify an action at every possible history they could face.
 - Pure strategies: $\sim 10^{12}$ per player.
 - NF size: payoff matrix of size $\sim 10^{12} \times 10^{12}$
 - Completely impossible to even write down.

Vot the extensive form is still just a few pages of rules

- 4) Poker at scale (No-Limit Hold'em)
 - Game tree size: $\sim 10^{161}$ infosets.
 - Normal form: astronomically large far more pure strategies than atoms in the universe.
 - That's why all practical solvers (e.g., Libratus, Pluribus) use regret minimization (CFR variants) in the extensive form.

Normal Form vs. Extensive Form Size

Game Example	Tree / Rules Size (extensive form)	Normal Form Pure Strategies	NF Payoff Matrix Size
Sequential RPS (toy)	Tiny tree (1 move each)	P1: 3, P2: 3 ³ = 27	3×27=81
Kuhn Poker (3 cards)	~12 decision nodes	~16 each	16×16=256
Leduc Poker (benchmark)	~936 decision nodes	~10 ¹² each	~10 ²⁴ entries
No-Limit Hold'em (2p)	~10 ¹⁶¹ infosets	astronomically many	infeasible to write

Normal Form vs. Extensive Form Size

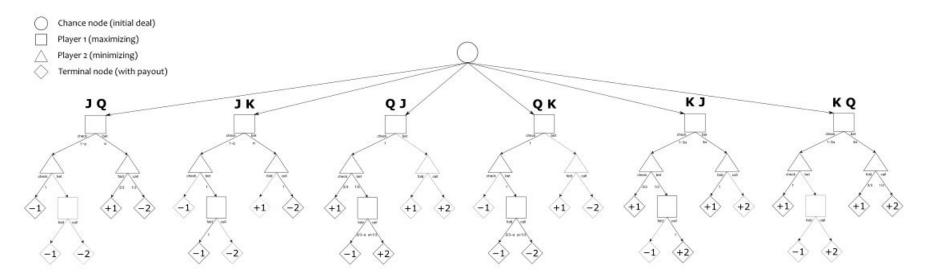
Game Example	Tree / Rules Size (extensive form)	Normal Form Pure Strategies	NF Payoff Matrix Size
Sequential RPS (toy)	Tiny tree (1 move each)	P1: 3, P2: 3 ³ = 27	3×27=81
Kuhn Poker (3 cards)	~12 decision nodes	~16 each	16×16=25616 \times 16 = 256
Leduc Poker (benchmark)	~936 decision nodes	~10 ¹² each	~10 ²⁴ entries
No-Limit Hold'em (2p) Even	~10 ¹⁶¹ infosets writing down the LP	astronomically many is infeasible for la	infeasible to write

Kuhn Poker

Rules

- Deck = $\{J, Q, K\}$. Each player antes 1 chip.
- Cards are dealt: each gets 1, one card unused.
- Betting: single round, possible actions = {check, bet}.
- If both check \rightarrow showdown, high card wins pot (2).
- If one bets: opponent can fold (bettor wins pot) or call (showdown, pot = 4).

Kuhn Poker



Kuhn Poker

Pure Strategies

- Player 1: must specify action at two info sets:
 - Holding J/Q/K when first to act.
 - Holding J/Q/K facing a bet from P2 after checking.
- So: 2 actions per infoset × 3 cards = 2³=8 possibilities for each decision point, times 2 → total ~16 pure strategies.
- Player 2: must specify action at two info sets:
 - With J/Q/K after P1 checks.
 - With J/Q/K after P1 bets.
- Same logic \rightarrow ~16 pure strategies.
- Result: normal form payoff matrix = $6 \times 16 = 256$
- Compare: the tree only had ~12 actual decision nodes.

Iterative Approaches

Instead of solving the whole LP, let strategies evolve through repeated play.

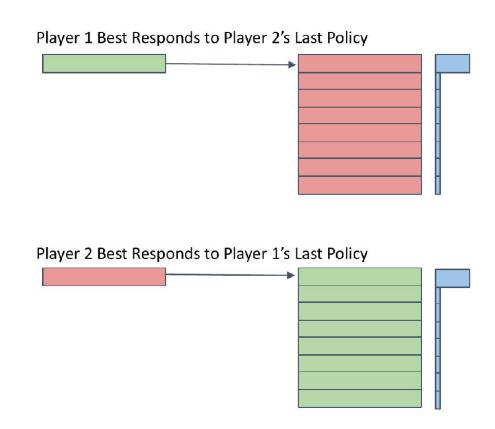
Each round:

- Observe opponent's past play (or empirical distribution).
- Choose/update your own strategy.

Only need local payoff computations, not the whole matrix.

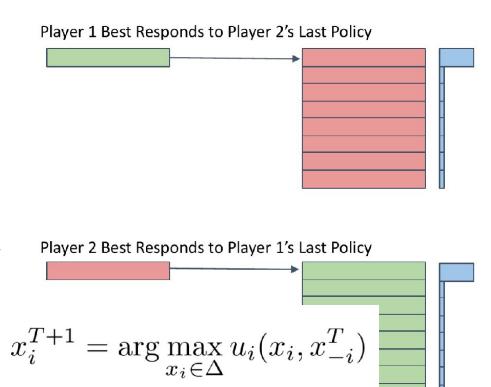
Self Play

- Both players learn best response to opponent's latest strategy
- Does not converge to a Nash equilibrium even in small games
- Will continue to cycle in games without pure strategy NE



Self Play

- Both players learn best response to opponent's latest strategy
- Does not converge to a Nash equilibrium even in small games
- Will continue to cycle in games without pure strategy NE



Self Play

- Step 1
 - o P1 plays Rock.
 - Best response for P2 is Paper (since Paper beats Rock).
- Step 2
 - o P2 plays Paper.
 - Best response for P1 is Scissors (beats Paper).
- Step 3
 - o P1 plays Scissors.
 - Best response for P2 is Rock (beats Scissors).
- Step 4
 - o P2 plays Rock.
 - Best response for P1 is Paper (beats Rock).

...and the cycle continues: $Rock \rightarrow Paper \rightarrow Scissors \rightarrow Rock \rightarrow ...$

	图		图
0.2	0	-1	+1
0.5	+1	0	-1
0.3	-1	+1	0
	_	·	_

$$x_i^{T+1} = \arg\max_{x_i \in \Delta} u_i(x_i, x_{-i}^T)$$

Fictitious Play (Follow the Leader

 Both players learn best response to opponent's average strategy

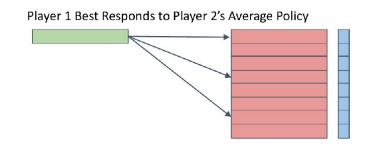
$$x_i^{T+1} = \arg\max_{x_i \in \Delta} u_i(x_i, x_{-i}^T)$$

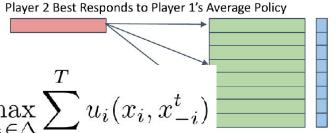
Fictitious Play (Follow the

Leader

- Both players learn best response to opponent's average strategy
- Average strategy converges to a Nash equilibrium (Robinson, 1951)

$$x_i^{T+1} = \arg\max_{x_i \in \Delta} u_i(x_i, x_{-i}^T) \longrightarrow x_i^{T+1} = \arg\max_{x_i \in \Delta} \sum_{t=1}^{T} u_i(x_i, x_{-i}^t)$$





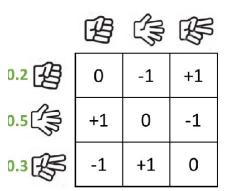
Fictitious Play (FTL) Example

• Example 1: Coordination Game

<u>.</u>	Left	Right	
Left	8, 8	0, 0	
Right	0, 0	8, 8	

Fictitious Play (FTL) Example

• Example 2: RPS



A Problem. A Regret?

- What if I'm playing a repeated game against someone who knows I am playing fictitious play?
- Then they would know exactly what my next move will be and could choose a best response every time
- Can we find iterative algorithms that will not be too bad even when the opponent knows the algorithm?
- No-regret algorithms do exactly this
 - And achieve faster convergence than FP as well!

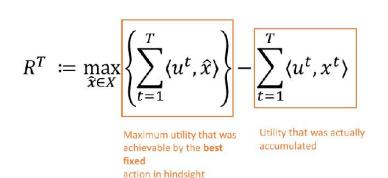
Regret

for t = 1, ..., T:

- Agent chooses an action distribution $x^t \in X := \Delta^n$
- Environment chooses a utility vector $u^t \in [0, 1]^n$
- Agent observes u^t and gets utility $\langle u^t, x^t \rangle$

 $\Delta^n = \text{set of distributions on } n$ things $\{x \in \mathbb{R}^n : x \ge 0, \sum x_i = 1\}$

- Regret = how much better you could have done if you had always played the best fixed action in hindsight.
- Goal: If regret grows sublinearly, average regret goes to o.
- Intuition: "I don't look back wishing I'd stuck to one action all along."



No Regret ⇒ Equilibrium

- Theorem (informal): In 2-player zero-sum games, if both players use no-regret algorithms, the empirical distributions of play converge to Nash equilibrium.
- Key consequence:
 - You don't need to solve the LP.
 - Just play the game repeatedly with a no-regret rule.

Why This Matters

- LP is exact, but infeasible at scale.
- Iterative self-play is unstable.
- No-regret learning is the scalable, principled fix.
- This is the foundation of modern game-solving (e.g., CFR in poker).