Solution Concepts for Normal-Form Games – Rationalizability

- Intuitively: strategy is rationalizable if it is a best response to beliefs about strategies of other players
- But it cannot be an arbitrary belief, must take into account rationality

	Heads	Tails
Heads	1, -1	-1, 1
Tails	-1, 1	1, -1

Figure 3.6: Matching Pennies game.

• Q. Is playing 'heads' rationalizable?

Figure 3.3: The TCP user's (aka the Prisoner's) Dilemma.

• Q. Is playing 'C' rationalizable?

- Formal definition:
 - For each player *i*, define infinite sequence:

$$S_{i}^{0}, S_{i}^{1}, S_{i}^{2}, \dots$$

$$S_{i}^{0} = S_{i}$$

$$S_{i}^{k} = \left\{ s_{i}: s_{i} \text{ is best response to} \right.$$

$$\text{some } s_{-i} \in \prod_{j \neq i} CH(S_{j}^{k-1}) \right\}$$

Definition 3.4.11 (Rationalizable strategies) *The* rationalizable strategies *for player i are* $\bigcap_{k=0}^{\infty} S_i^k$.

- Nash equilibrium strategies are always rationalizable
- In 2-player games, rationalizable strategies are exactly those strategies that survive iterated removal of strictly dominated strategies.

Solution Concepts for Normal-Form Games – Dominated Strategies

Definition 3.4.8 (Domination) Let s_i and s'_i be two strategies of player *i*, and S_{-i} the set of all strategy profiles of the remaining players. Then

- 1. s_i strictly dominates s'_i if for all $s_{-i} \in S_{-i}$, it is the case that $u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$.
- 2. s_i weakly dominates s'_i if for all $s_{-i} \in S_{-i}$, it is the case that $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$, and for at least one $s_{-i} \in S_{-i}$, it is the case that $u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$.
- 3. s_i very weakly dominates s'_i if for all $s_{-i} \in S_{-i}$, it is the case that $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$.

Definition 3.4.9 (Dominant strategy) A strategy is strictly (resp., weakly; very weakly) dominant for an agent if it strictly (weakly; very weakly) dominates any other strategy for that agent.

Definition 3.4.10 (Dominated strategy) A strategy s_i is strictly (weakly; very weakly) dominated for an agent i if some other strategy s'_i strictly (weakly; very weakly) dominates s_i .

$L \quad C \quad R$

U	3,1	0,1	0, 0
Μ	1,1	1,1	5, 0
D	0,1	4,1	0, 0

Figure 3.15: A game with dominated strategies.

L C

U	3,1	0, 1
M	1,1	1, 1
D	0, 1	4, 1

Figure 3.16: The game from Figure 3.15 after removing the dominated strategy R.

 $\begin{array}{c|cc} L & C \\ \\ U & 3,1 & 0,1 \\ \\ D & 0,1 & 4,1 \end{array}$

Figure 3.17: The game from Figure 3.16 after removing the dominated strategy M.

Solution Concepts for Normal-Form Games – Minimax regret

	L	R
T	100, a	$1-\epsilon, b$
В	2, c	1, d

Definition 3.4.5 (Regret) An agent *i*'s regret for playing an action a_i if the other agents adopt action profile a_{-i} is defined as

$$\left[\max_{a_i' \in A_i} u_i(a_i', a_{-i})\right] - u_i(a_i, a_{-i}).$$

Definition 3.4.6 (Max regret) An agent *i*'s maximum regret for playing an action a_i is defined as

$$\max_{a_{-i}\in A_{-i}} \left(\left[\max_{a_i'\in A_i} u_i(a_i', a_{-i}) \right] - u_i(a_i, a_{-i}) \right).$$

Definition 3.4.7 (Minimax regret) *Minimax regret actions for agent i are defined as*

$$\underset{a_i \in A_i}{\operatorname{arg\,min}} \left[\max_{a_{-i} \in A_{-i}} \left(\left[\max_{a'_i \in A_i} u_i(a'_i, a_{-i}) \right] - u_i(a_i, a_{-i}) \right) \right].$$

• Q. Why sufficient to look at actions, as opposed to strategies?

Definition 3.4.7 (Minimax regret) *Minimax regret actions for agent i are defined as*

$$\underset{a_i \in A_i}{\operatorname{arg\,min}} \left[\max_{a_{-i} \in A_{-i}} \left(\left[\max_{a'_i \in A_i} u_i(a'_i, a_{-i}) \right] - u_i(a_i, a_{-i}) \right) \right].$$

• Q. Why sufficient to look at actions, as opposed to strategies?

Solution Concepts for Normal-Form Games – Correlated Equilibrium

	LW	WL
LW	2, 1	0, 0
WL	0, 0	1,2

Figure 3.18: Battle of the Sexes game.

- Imagine players condition their results on a coin flip: WL if heads; LW if tails
- Expected payoff: 1.5 for each player

Definition 3.4.12 (Correlated equilibrium) Given an n-agent game G = (N, A, u), a correlated equilibrium is a tuple (v, π, σ) , where v is a tuple of random variables $v = (v_1, \ldots, v_n)$ with respective domains $D = (D_1, \ldots, D_n)$, π is a joint distribution over $v, \sigma = (\sigma_1, \ldots, \sigma_n)$ is a vector of mappings $\sigma_i : D_i \mapsto A_i$, and for each agent i and every mapping $\sigma'_i : D_i \mapsto A_i$ it is the case that

$$\sum_{d \in D} \pi(d) u_i \left(\sigma_1(d_1), \dots, \sigma_i(d_i), \dots, \sigma_n(d_n) \right)$$
$$\geq \sum_{d \in D} \pi(d) u_i \left(\sigma_1(d_1), \dots, \sigma'_i(d_i), \dots, \sigma_n(d_n) \right).$$

• Mapping is to an action, but allowing mixed strategies adds no greater generality

Definition 3.4.12 (Correlated equilibrium) Given an n-agent game G = (N, A, u), a correlated equilibrium is a tuple (v, π, σ) , where v is a tuple of random variables $v = (v_1, \ldots, v_n)$ with respective domains $D = (D_1, \ldots, D_n)$, π is a joint distribution over $v, \sigma = (\sigma_1, \ldots, \sigma_n)$ is a vector of mappings $\sigma_i : D_i \mapsto A_i$, and for each agent i and every mapping $\sigma'_i : D_i \mapsto A_i$ it is the case that

$$\sum_{d \in D} \pi(d) u_i \left(\sigma_1(d_1), \dots, \sigma_i(d_i), \dots, \sigma_n(d_n) \right)$$
$$\geq \sum_{d \in D} \pi(d) u_i \left(\sigma_1(d_1), \dots, \sigma'_i(d_i), \dots, \sigma_n(d_n) \right).$$

- Mapping is to an action, but allowing mixed strategies adds no greater generality
- Every convex combination of C.E.s is a C.E.

Theorem 3.4.13 For every Nash equilibrium σ^* there exists a corresponding correlated equilibrium σ .

Solution Concepts for Normal-Form Games – More Concepts

Trembling-hand perfect eq.

Definition 3.4.14 (Trembling-hand perfect equilibrium) A mixed-strategy profile s is a (trembling-hand) perfect equilibrium of a normal-form game G if there exists a sequence s^0, s^1, \ldots of fully mixed-strategy profiles such that $\lim_{n\to\infty} s^n = s$, and such that for each s^k in the sequence and each player i, the strategy s_i is a best response to the strategies s_{-i}^k .

- Perfect eq. is stronger than N.E.
- Can require to be robust against small errors ("trembling hand")

ε-Nash Equilibrium

Definition 3.4.15 (ϵ -Nash) Fix $\epsilon > 0$. A strategy profile $s = (s_1, \ldots, s_n)$ is an ϵ -Nash equilibrium if, for all agents i and for all strategies $s'_i \neq s_i$, $u_i(s_i, s_{-i}) \geq u_i(s'_i, s_{-i}) - \epsilon$.

- Advantages:
 - Always exist
 - Can be computationally useful
- But not necessarily close to a Nash Equilibrium

ε-Nash Equilibrium

Definition 3.4.15 (ϵ -Nash) Fix $\epsilon > 0$. A strategy profile $s = (s_1, \ldots, s_n)$ is an ϵ -Nash equilibrium if, for all agents i and for all strategies $s'_i \neq s_i$, $u_i(s_i, s_{-i}) \geq u_i(s'_i, s_{-i}) - \epsilon$.

- Advantages:
 - Always exist
 - Can be computationally useful
- But not necessarily close to a Nash Equilibrium

ε-Nash Equilibrium

Figure 3.19: A game with an interesting ϵ -Nash equilibrium.

