
RESEARCH ARTICLE
◥

COMPUTER SCIENCE

Superhuman AI for multiplayer poker
Noam Brown1,2* and Tuomas Sandholm1,3,4,5*

In recent years there have been great strides in artificial intelligence (AI), with games often
serving as challenge problems, benchmarks, and milestones for progress. Poker has served for
decades as such a challenge problem. Past successes in such benchmarks, including poker,
have been limited to two-player games. However, poker in particular is traditionally played
with more than two players. Multiplayer games present fundamental additional issues
beyond those in two-player games, and multiplayer poker is a recognized AI milestone. In
this paper we present Pluribus, an AI that we show is stronger than top human professionals
in six-player no-limit Texas hold’empoker, themost popular form of poker played by humans.

P
oker has served as a challenge problem
for the fields of artificial intelligence (AI)
and game theory for decades (1). In fact,
the foundational papers on game theory
used poker to illustrate their concepts

(2, 3). The reason for this choice is simple: No
other popular recreational game captures the
challenges of hidden information as effectively
and as elegantly as poker. Although poker has
been useful as a benchmark for new AI and
game-theoretic techniques, the challenge of
hidden information in strategic settings is not
limited to recreational games. The equilibrium
concepts of von Neumann and Nash have been
applied to many real-world challenges such as
auctions, cybersecurity, and pricing.
The past two decades have witnessed rapid

progress in the ability of AI systems to play in-
creasingly complex forms of poker (4–6). How-
ever, all prior breakthroughs have been limited
to settings involving only two players. Develop-
ing a superhuman AI for multiplayer poker was
the widely recognizedmain remainingmilestone.
In this paper we describe Pluribus, an AI capa-
ble of defeating elite human professionals in six-
player no-limit Texas hold’em poker, the most
commonly played poker format in the world.

Theoretical and practical challenges of
multiplayer games

AI systems have reached superhuman perform-
ance in games such as checkers (7), chess (8),
two-player limit poker (4), Go (9), and two-
player no-limit poker (6). All of these involve
only two players and are zero-sum games (mean-
ing that whatever one player wins, the other
player loses). Every one of those superhuman AI
systemswas generated by attempting to approx-
imate a Nash equilibrium strategy rather than

by, for example, trying to detect and exploit
weaknesses in the opponent. A Nash equilib-
rium is a list of strategies, one for each player,
in which no player can improve by deviating to
a different strategy. Nash equilibria have been
proven to exist in all finite games—and many
infinite games—though finding an equilibrium
may be difficult.
Two-player zero-sum games are a special class

of games in which Nash equilibria also have an
extremely useful additional property: Any player
who chooses to use a Nash equilibrium is guar-
anteed to not lose in expectation no matter what
the opponent does (as long as one side does
not have an intrinsic advantage under the game
rules, or the players alternate sides). In other
words, a Nash equilibrium strategy is unbeat-
able in two-player zero-sum games that satisfy
the above criteria. For this reason, to “solve”
a two-player zero-sum game means to find an

exact Nash equilibrium. For example, the Nash
equilibrium strategy for Rock-Paper-Scissors is
to randomly pick Rock, Paper, or Scissors with
equal probability. Against such a strategy, the
best that an opponent can do in expectation is
tie (10). In this simple case, playing the Nash
equilibrium also guarantees that the player
will not win in expectation. However, in more
complex games, even determining how to tie
against a Nash equilibrium may be difficult; if
the opponent ever chooses suboptimal actions,
then playing the Nash equilibrium will indeed
result in victory in expectation.
In principle, playing the Nash equilibrium can

be combined with opponent exploitation by ini-
tially playing the equilibrium strategy and then
over time shifting to a strategy that exploits the
opponent’s observed weaknesses (for example,
by switching to always playing Paper against an
opponent that always plays Rock) (11). However,
except in certain restricted ways (12), shifting to
an exploitative nonequilibrium strategy opens
oneself up to exploitation because the opponent
could also change strategies at any moment.
Additionally, existing techniques for opponent
exploitation require toomany samples to be com-
petitivewith human ability outside of small games.
Pluribus plays a fixed strategy that does not adapt
to the observed tendencies of the opponents.
Although aNash equilibrium strategy is guar-

anteed to exist in any finite game, efficient al-
gorithms for finding one are only proven to
exist for special classes of games, among which
two-player zero-sum games are the most prom-
inent. No polynomial-time algorithm is known
for finding a Nash equilibrium in two-player
non-zero-sum games, and the existence of one
would have sweeping surprising implications in
computational complexity theory (13, 14). Finding
a Nash equilibrium in zero-sum games with
three or more players is at least as hard (because

RESEARCH

Brown et al., Science 365, 885–890 (2019) 30 August 2019 1 of 6

1Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA. 2Facebook AI Research, New
York, NY 10003, USA. 3Strategic Machine, Inc., Pittsburgh,
PA 15213, USA. 4Strategy Robot, Inc., Pittsburgh, PA 15213,
USA. 5Optimized Markets, Inc., Pittsburgh, PA 15213, USA.
*Corresponding author. Email: noamb@cs.cmu.edu (N.B.);
sandholm@cs.cmu.edu (T.S.)

Fig. 1. An example of the equilibrium selection problem. In the Lemonade Stand Game, players
simultaneously choose a point on a ring and want to be as far away as possible from any other
player. In every Nash equilibrium, players are spaced uniformly around the ring. There are infinitely
many such Nash equilibria. However, if each player independently chooses one Nash equilibrium to
play, their joint strategy is unlikely to be a Nash equilibrium. (Left) An illustration of three different
Nash equilibria in this game, distinguished by three different colors. (Right) Each player
independently chooses one Nash equilibrium. Their joint strategy is not a Nash equilibrium.

D
ow

nloaded from
 https://w

w
w

.science.org at T
exas A

&
M

 U
niversity on O

ctober 15, 2024

a dummy player can be added to the two-player
game to make it a three-player zero-sum game).
Even approximating a Nash equilibrium is hard
(except in special cases) in theory (15), and in
games with more than two players, even the best
complete algorithm can only address games with
a handful of possible strategies per player (16).
Moreover, even if a Nash equilibrium could be
computed efficiently in a game with more than
two players, it is not clear that playing such an
equilibrium strategy would be wise. If each
player in such a game independently computes
and plays a Nash equilibrium, the list of strat-
egies that they play (one strategy per player)
may not be a Nash equilibrium and players
might have an incentive to deviate to a different
strategy. One example of this is the Lemonade
Stand Game (17), illustrated in Fig. 1, in which
each player simultaneously picks a point on a
ring and wants to be as far away as possible
from any other player. The Nash equilibrium is
for all players to be spaced uniformly along the
ring, but there are infinitely many ways this can
be accomplished and therefore infinitely many
Nash equilibria. If each player independently
computes one of those equilibria, the joint strat-
egy is unlikely to result in all players being
spaced uniformly along the ring. Two-player
zero-sum games are a special case where even
if the players independently compute and select
Nash equilibria, the list of strategies is still a
Nash equilibrium.
The shortcomings of Nash equilibria outside

of two-player zero-sum games, and the failure
of any other game-theoretic solution concept to
convincingly overcome them, have raised the
question of what the right goal should even be
in such games. In the case of six-player poker,
we take the viewpoint that our goal should not

be a specific game-theoretic solution concept
but rather to create an AI that empirically
consistently defeats human opponents, includ-
ing elite human professionals.
The algorithms that we used to construct

Pluribus, discussed in the next two sections,
are not guaranteed to converge to a Nash equi-
librium outside of two-player zero-sum games.
Nevertheless, we observe that Pluribus plays a
strong strategy in multiplayer poker that is
capable of consistently defeating elite human
professionals. This shows that even though the
techniques do not have known strong theoret-
ical guarantees on performance outside of the
two-player zero-sum setting, they are nevertheless
capable of producing superhuman strategies in
a wider class of strategic settings.

Description of Pluribus

The core of Pluribus’s strategy was computed
through self-play, in which the AI plays against
copies of itself, without any data of human or
prior AI play used as input. The AI starts from
scratch by playing randomly and gradually im-
proves as it determines which actions, andwhich
probability distribution over those actions, lead
to better outcomes against earlier versions of its
strategy. Forms of self-play have previously been
used to generate powerful AIs in two-player zero-
sum games such as backgammon (18), Go (9, 19),
Dota 2 (20), StarCraft 2 (21), and two-player
poker (4–6), though the precise algorithms that
were used have varied widely. Although it is
easy to construct toy games with more than two
players in which commonly used self-play algo-
rithms fail to converge to a meaningful solution
(22), in practice self-play has nevertheless been
shown to do reasonably well in some games
with more than two players (23).

Pluribus’s self-play produces a strategy for the
entire game offline, which we refer to as the
blueprint strategy. Then during actual play against
opponents, Pluribus improves upon the blueprint
strategy by searching for a better strategy in real
time for the situations in which it finds itself
during the game. In subsections below, we dis-
cuss both of those phases in detail, but first we
discuss abstraction, forms of which are used in
both phases to make them scalable.

Abstraction for large imperfect-
information games

There are far toomany decision points in no-limit
Texas hold’em to reason about individually. To
reduce the complexity of the game, we eliminate
some actions from consideration and also bucket
similar decision points together in a process called
abstraction (24, 25). After abstraction, the bucketed
decision points are treated as identical. We use
two kinds of abstraction inPluribus: action abstrac-
tion and information abstraction.
Action abstraction reduces the number of dif-

ferent actions the AI needs to consider. No-limit
Texas hold’em normally allows any whole-dollar
bet between $100 and $10,000. However, in
practice there is little difference between betting
$200 and betting $201. To reduce the complexity
of forming a strategy, Pluribus only considers
a few different bet sizes at any given decision
point. The exact number of bets it considers
varies between 1 and 14 depending on the sit-
uation. Although Pluribus can limit itself to only
betting one of a few different sizes between
$100 and $10,000, when actually playing no-limit
poker, the opponents are not constrained to those
few options. What happens if an opponent bets
$150 while Pluribus has only been trained to con-
sider bets of $100 or $200? Generally, Pluribus

Brown et al., Science 365, 885–890 (2019) 30 August 2019 2 of 6

Fig. 2. A game tree traversal via Monte Carlo CFR. In this figure,
player P1 is traversing the game tree. (Left) A game is simulated
until an outcome is reached. (Middle) For each P1 decision point
encountered in the simulation in the left panel, P1 explores
each other action that P1 could have taken and plays out a simulation
to the end of the game. P1 then updates its strategy to pick actions
with higher payoff with higher probability. (Right) P1 explores each
other action that P1 could have taken at every new decision point

encountered in the middle panel, and P1 updates its strategy at those
hypothetical decision points. This process repeats until no new P1

decision points are encountered, which in this case is after three
steps but in general may be more. Our implementation of MCCFR
(described in the supplementary materials) is equivalent but traverses
the game tree in a depth-first manner. (The percentages in the figure
are for illustration purposes only and may not correspond to actual
percentages that the algorithm would compute.)

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at T

exas A
&

M
 U

niversity on O
ctober 15, 2024

will rely on its search algorithm (described in a
later section) to compute a response in real time
to such “off-tree” actions.
The other form of abstraction that we use in

Pluribus is information abstraction, in which
decision points that are similar in terms of what
information has been revealed (in poker, the
player’s cards and revealed board cards) are
bucketed together and treated identically (26–28).
For example, a 10-high straight and a 9-high
straight are distinct hands but are nevertheless
strategically similar. Pluribus may bucket these
hands together and treat them identically, thereby
reducing the number of distinct situations for
which it needs to determine a strategy. Infor-
mation abstraction drastically reduces the com-
plexity of the game, but it may wash away subtle
differences that are important for superhuman
performance. Therefore, during actual play against
humans, Pluribus uses information abstraction
only to reason about situations on future betting
rounds, never the betting round that it is actually
in. Information abstraction is also applied during
offline self-play.

Self-play through improved Monte Carlo
counterfactual regret minimization

The blueprint strategy in Pluribus was computed
using a variant of counterfactual regret minimi-
zation (CFR) (29). CFR is an iterative self-play

algorithm in which the AI starts by playing com-
pletely at random but gradually improves by
learning to beat earlier versions of itself. Every
competitive Texas hold’em AI for at least the
past 6 years has computed its strategy using
some variant of CFR (4–6, 23, 28, 30–34). We
use a form of Monte Carlo CFR (MCCFR) that
samples actions in the game tree rather than
traversing the entire game tree on each iteration
(33, 35–37).
On each iteration of the algorithm, MCCFR

designates one player as the traverser whose
current strategy is updated on the iteration. At
the start of the iteration, MCCFR simulates a
hand of poker based on the current strategy of
all players (which is initially completely random).
Once the simulated hand is completed, the AI
reviews each decision that was made by the
traverser and investigates how much better
or worse it would have done by choosing the
other available actions instead. Next, the AI
reviews each hypothetical decision that would
have been made following those other available
actions and investigates how much better it
would have done by choosing the other availa-
ble actions, and so on. This traversal of the game
tree is illustrated in Fig. 2. Exploring other hy-
pothetical outcomes is possible because the AI
knows each player’s strategy for the iteration
and can therefore simulate what would have

happened had some other action been chosen
instead. This counterfactual reasoning is one of
the features that distinguishes CFR from other
self-play algorithms that have been deployed
in domains such as Go (9), Dota 2 (20), and
StarCraft 2 (21).
The difference between what the traverser

would have received for choosing an action
versus what the traverser actually achieved (in
expectation) on the iteration is added to the
counterfactual regret for the action. Counter-
factual regret represents how much the tra-
verser regrets having not chosen that action
in previous iterations. At the end of the iter-
ation, the traverser’s strategy is updated so that
actions with higher counterfactual regret are
chosen with higher probability.
For two-player zero-sum games, CFR guar-

antees that the average strategy played over all
iterations converges to a Nash equilibrium, but
convergence to a Nash equilibrium is not guar-
anteed outside of two-player zero-sum games.
Nevertheless, CFR guarantees in all finite games
that all counterfactual regrets grow sublinearly
in the number of iterations. This, in turn, guar-
antees in the limit that the average performance
of CFR on each iteration that was playedmatches
the average performance of the best single fixed
strategy in hindsight. CFR is also proven to elim-
inate iteratively strictly dominated actions in all
finite games (23).
Because the difference between counterfactual

value and expected value is added to counter-
factual regret rather than replacing it, the first
iteration in which the agent played completely
randomly (which is typically a very bad strat-
egy) still influences the counterfactual regrets,
and therefore the strategy that is played, for
iterations far into the future. In the original
form of CFR, the influence of this first iter-
ation decays at a rate of 1T, whereT is the number
of iterations played. To more quickly decay the
influence of these early “bad” iterations, Pluribus
uses a recent form of CFR called Linear CFR
(38) in early iterations. (We stop the discount-
ing after that because the time cost of doing the
multiplications with the discount factor is not
worth the benefit later on.) Linear CFR assigns
a weight of T to the regret contributions of
iteration T . Therefore, the influence of the first

iteration decays at a rate of 1PT
t¼1 t

¼ 2
T ðTþ1Þ .

This leads to the strategy improving more quickly
in practice while still maintaining a near-identical
worst-case bound on total regret. To speed up
the blueprint strategy computation even further,
actions with extremely negative regret are not
explored in 95% of iterations.
The blueprint strategy for Pluribus was com-

puted in 8 days on a 64-core server for a total
of 12,400 CPU core hours. It required less than
512 GB of memory. At current cloud computing
spot instance rates, this would cost about $144
to produce. This is in sharp contrast to all the
other recent superhumanAImilestones for games,
which used large numbers of servers and/or farms
of graphics processingunits (GPUs).Morememory

Brown et al., Science 365, 885–890 (2019) 30 August 2019 3 of 6

Fig. 3. Perfect-information game search in Rock-Paper-Scissors. (Top) A sequential representation
of Rock-Paper-Scissors in which player 1 acts first but does not reveal her action to player 2, who
acts second. The dashed lines between the player 2 nodes signify that player 2 does not know
which of those nodes he is in. The terminal values are shown only for player 1. (Bottom) A depiction
of the depth-limited subgame if player 1 conducts search (with a depth of one) using the same
approach as is used in perfect-information games. The approach assumes that after each action,
player 2 will play according to the Nash equilibrium strategy of choosing Rock, Paper, and Scissors

with 1
3 probability each. This results in a value of zero for player 1 regardless of her strategy.

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at T

exas A
&

M
 U

niversity on O
ctober 15, 2024

and computation would enable a finer-grained
blueprint that would lead to better performance
but would also result in Pluribus using more
memory or being slower during real-time search.
We set the size of the blueprint strategy abstrac-
tion to allow Pluribus to run during live play on a
machine with no more than 128 GB of memory
while storing a compressed formof the blueprint
strategy in memory.

Depth-limited search in
imperfect-information games

The blueprint strategy for the entire game is
necessarily coarse-grained owing to the size and
complexity of no-limit Texas hold’em. Pluribus
only plays according to this blueprint strategy
in the first betting round (of four), where the
number of decision points is small enough that
the blueprint strategy can afford to not use in-
formation abstraction and have a lot of actions
in the action abstraction. After the first round
(and even in the first round if an opponent
chooses a bet size that is sufficiently different
from the sizes in the blueprint action abstrac-
tion), Pluribus instead conducts real-time search
to determine a better, finer-grained strategy
for the current situation it is in. For opponent
bets on the first round that are slightly off the
tree, Pluribus rounds the bet to a nearby on-
tree size [using the pseudoharmonic mapping
(39)] and proceeds to play according to the
blueprint as if the opponent had used the latter
bet size.
Real-time search has been necessary for

achieving superhuman performance in many
perfect-information games, including backgam-
mon (18), chess (8), and Go (9, 19). For example,
when determining their next move, chess AIs
commonly look some number of moves ahead

until a leaf node is reached at the depth limit of
the algorithm’s lookahead. An evaluation func-
tion then estimates the value of the board con-
figuration at the leaf node if both players were
to play a Nash equilibrium from that point
forward. In principle, if an AI could accurately
calculate the value of every leaf node (e.g., win,
draw, or loss), this algorithm would choose the
optimal next move.
However, search as has been done in perfect-

information games is fundamentally broken
when applied to imperfect-information games.
For example, consider a sequential form of Rock-
Paper-Scissors, illustrated in Fig. 3, in which
player 1 acts first but does not reveal her action to
player 2, followed by player 2 acting. If player
1were to conduct search that looks just onemove
ahead, every one of her actions would appear to
lead to a leaf node with zero value. After all, if
player 2 plays the Nash equilibrium strategy of
choosing each action with 1

3 probability, the
value to player 1 of choosing Rock is zero, as
is the value of choosing Scissors. So player 1’s
search algorithm could choose to always play
Rock because, given the values of the leaf nodes,
this appears to be equally good as any other
strategy.
Indeed, if player 2’s strategy were fixed to al-

ways playing the Nash equilibrium, always play-
ing Rock would be an optimal player 1 strategy.
However, in reality, player 2 could adjust to a
strategy of always playing Paper. In that case,
the value of always playing Rock would actual-
ly be �1.
This example illustrates that in imperfect-

information subgames (the part of the game
in which search is being conducted) (40), leaf
nodes do not have fixed values. Instead, their
values depend on the strategy that the searcher

chooses in the subgame (that is, the probabilities
that the searcher assigns to his actions in the
subgame). In principle, this could be addressed
by having the value of a subgame leaf node be
a function of the searcher’s strategy in the sub-
game, but this is impractical in large games.
One alternative is to make the value of a leaf
node conditional only on the belief distribu-
tion of both players at that point in the game.
This was used to generate the two-player poker
AI DeepStack (5). However, this option is ex-
tremely expensive because it requires one to
solve huge numbers of subgames that are con-
ditional on beliefs. It becomes even more ex-
pensive as the amount of hidden information
or the number of players grows. The two-player
poker AI Libratus sidestepped this issue by only
doing real-time search when the remaining game
was short enough that the depth limit would ex-
tend to the end of the game (6). However, as the
number of players grows, always solving to the
end of the game also becomes computationally
prohibitive.
Pluribus instead uses a modified form of an

approach that we recently designed—previously
only for two-player zero-sum games (41)—in
which the searcher explicitly considers that
any or all players may shift to different strat-
egies beyond the leaf nodes of a subgame. Spe-
cifically, rather than assuming that all players
play according to a single fixed strategy beyond
the leaf nodes (which results in the leaf nodes
having a single fixed value), we instead assume
that each player may choose between k differ-
ent strategies, specialized to each player, to
play for the remainder of the game when a
leaf node is reached. In the experiments in this
paper, k ¼ 4 . One of the four continuation
strategies that we use in the experiments is the

Brown et al., Science 365, 885–890 (2019) 30 August 2019 4 of 6

Fig. 4. Real-time search in Pluribus.The subgame shows just two players
for simplicity. A dashed line between nodes indicates that the player to
act does not know which of the two nodes she is in. (Left) The original
imperfect-information subgame. (Right) The transformed subgame that is
searched in real time to determine a player’s strategy. An initial chance
node reaches each root node according to the normalized probability that
the node is reached in the previously computed strategy profile (or
according to the blueprint strategy profile if this is the first time in the hand

that real-time search is conducted). The leaf nodes are replaced by a
sequence of new nodes in which each player still in the hand chooses
among k actions, with no player first observing what another player
chooses. For simplicity, k ¼ 2 in the figure. In Pluribus, k ¼ 4. Each action in
that sequence corresponds to a selection of a continuation strategy for that
player for the remainder of the game. This effectively leads to a terminal
node (whose value is estimated by rolling out the remainder of the game
according to the list of continuation strategies that the players chose).

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at T

exas A
&

M
 U

niversity on O
ctober 15, 2024

precomputed blueprint strategy; another is a
modified form of the blueprint strategy in which
the strategy is biased toward folding; another
is the blueprint strategy biased toward call-
ing; and the final option is the blueprint strat-
egy biased toward raising. This technique results
in the searcher finding a strategy that is more
balanced because choosing an unbalanced strat-
egy (e.g., always playing Rock in Rock-Paper-
Scissors) would be punished by an opponent
shifting to one of the other continuation strat-
egies (e.g., always playing Paper).
Another major challenge of search in imperfect-

information games is that a player’s optimal
strategy for a particular situation depends on
what the player’s strategy is for every situation
the player could be in from the perspective of
her opponents. For example, suppose the player
is holding the best possible hand. Betting in this
situation could be a good action. But if the
player bets in this situation only when hold-
ing the best possible hand, then the opponents
would know that they should always fold in
response.

To cope with this challenge, Pluribus keeps
track of the probability it would have reached
the current situation with each possible hand
according to its strategy. Regardless of which
hand Pluribus is actually holding, it will first
calculate how it would act with every possible
hand, being careful to balance its strategy across
all the hands so as to remain unpredictable to
the opponent. Once this balanced strategy across
all hands is computed, Pluribus then executes
an action for the hand it is actually holding.
The structure of a depth-limited imperfect-
information subgame as used in Pluribus is
shown in Fig. 4.
Pluribus used one of two different forms of

CFR to compute a strategy in the subgame,
depending on the size of the subgame and the
part of the game. If the subgame is relatively
large or it is early in the game, then Monte
Carlo Linear CFR is used just as it was for the
blueprint strategy computation. Otherwise,
Pluribus uses an optimized vector-based form
of Linear CFR (38) that samples only chance
events (such as board cards) (42).

When playing, Pluribus runs on two Intel
Haswell E5-2695 v3 CPUs and uses less than
128 GB of memory. For comparison, AlphaGo
used 1920 CPUs and 280 GPUs for real-time
search in its 2016 matches against top Go pro-
fessional Lee Sedol (43), Deep Blue used 480
custom-designed chips in its 1997matches against
top chess professional Garry Kasparov (8), and
Libratus used 100 CPUs in its 2017 matches
against top professionals in two-player poker
(6). The amount of time that Pluribus takes to
conduct search on a single subgame varies be-
tween 1 and 33 s, depending on the particular
situation. On average, Pluribus plays at a rate
of 20 s per hand when playing against copies of
itself in six-player poker. This is roughly twice
as fast as professional humans tend to play.

Experimental evaluation

We evaluated Pluribus against elite human profes-
sionals in two formats: five human professionals
playing with one copy of Pluribus (5H+1AI), and
one human professional playing with five copies
of Pluribus (1H+5AI). Each human participant
has won more than $1 million playing poker
professionally. Performance was measured by
using the standard metric in this field of AI,
milli big blinds per game (mbb/game). This mea-
sures howmany big blinds (the initialmoney the
second player must put into the pot) were won
on average per thousand hands of poker. In all
experiments, we used the variance-reduction
technique AIVAT (44) to reduce the luck factor
in the game (45) and measured statistical sig-
nificance at the 95% confidence level using a
one-tailed t test to determine whether Pluribus
is profitable.
The human participants in the 5H+1AI

experiment were Jimmy Chou, Seth Davies,
Michael Gagliano, Anthony Gregg, Dong Kim,
Jason Les, Linus Loeliger, Daniel McAulay,
Greg Merson, Nicholas Petrangelo, Sean Ruane,
Trevor Savage, and Jacob Toole. In this exper-
iment, 10,000 hands of poker were played over
12 days. Each day, five volunteers from the pool
of professionals were selected to participate
on the basis of availability. The participants
were not told who else was participating in
the experiment. Instead, each participant was
assigned an alias that remained constant
throughout the experiment. The alias of each
player in each game was known, so that play-
ers could track the tendencies of each player
throughout the experiment. $50,000 was di-
vided among the human participants on the
basis of their performance to incentivize them
to play their best. Each player was guaranteed
a minimum of $0.40 per hand for partici-
pating, but this could increase to as much as
$1.60 per hand on the basis of performance.
After applying AIVAT, Pluribus won an aver-
age of 48 mbb/game (with a standard error of
25 mbb/game). This is considered a very high
win rate in six-player no-limit Texas hold’em
poker, especially against a collection of elite
professionals, and implies that Pluribus is
stronger than the human opponents. Pluribus

Brown et al., Science 365, 885–890 (2019) 30 August 2019 5 of 6

Fig. 5. Performance of Pluribus in the 5 humans + 1 AI experiment. The dots show Pluribus's
performance at the end of each day of play. (Top) The lines show the win rate (solid line) plus or
minus the standard error (dashed lines). (Bottom) The lines show the cumulative number of mbbs
won (solid line) plus or minus the standard error (dashed lines).The relatively steady performance of
Pluribus over the course of the 10,000-hand experiment also suggests that the humans were unable
to find exploitable weaknesses in the bot.

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at T

exas A
&

M
 U

niversity on O
ctober 15, 2024

was determined to be profitable with a p val-
ue of 0.028. The performance of Pluribus over
the course of the experiment is shown in Fig. 5.
(Owing to the extremely high variance in no-
limit poker and the impossibility of applying
AIVAT to human players, the win rate of in-
dividual human participants could not be de-
termined with statistical significance.)
The human participants in the 1H+5AI ex-

periment were Chris “Jesus” Ferguson and
Darren Elias. Each of the two humans sep-
arately played 5000 hands of poker against
five copies of Pluribus. Pluribus does not
adapt its strategy to its opponents and does
not know the identity of its opponents, so the
copies of Pluribus could not intentionally col-
lude against the human player. To incentivize
strong play, we offered each human $2000
for participation and an additional $2000 if
he performed better against the AI than the
other human player did. The players did not
know who the other participant was and
were not told how the other human was per-
forming during the experiment. For the 10,000
hands played, Pluribus beat the humans by an
average of 32 mbb/game (with a standard error
of 15 mbb/game). Pluribus was determined to
be profitable with a p value of 0.014. (Darren
Elias was behind Pluribus by 40 mbb/game
with a standard error of 22 mbb/game and a
p value of 0.033, and Chris Ferguson was
behind Pluribus by 25 mbb/game with a stan-
dard error of 20 mbb/game and a p value of
0.107. Ferguson’s lower loss rate may be a
consequence of variance, skill, and/or his
use of a more conservative strategy that was
biased toward folding in unfamiliar difficult
situations.)
Because Pluribus’s strategy was determined

entirely from self-play without any human data,
it also provides an outside perspective on what
optimal play should look like in multiplayer no-
limit Texas hold’em. Pluribus confirms the con-
ventional human wisdom that limping (calling
the “big blind” rather than folding or raising)
is suboptimal for any player except the “small
blind” player who already has half the big
blind in the pot by the rules, and thus has to
invest only half as much as the other players to
call. Although Pluribus initially experimented
with limpingwhen computing its blueprint strat-
egy offline through self-play, it gradually dis-
carded this action from its strategy as self-play
continued. However, Pluribus disagrees with
the folk wisdom that “donk betting” (starting a
round by betting when one ended the previous
betting round with a call) is a mistake; Pluribus
does this far more often than professional hu-
mans do.

Conclusions

Forms of self-play combinedwith forms of search
have led to a number of high-profile successes in
perfect-information two-player zero-sum games.
However, most real-world strategic interactions
involve hidden information and more than two
players. This makes the problem very different

and considerably more difficult both theoret-
ically and practically. Developing a superhuman
AI for multiplayer poker was a widely recog-
nized milestone in this area and the major
remaining milestone in computer poker. In
this paper we described Pluribus, an AI ca-
pable of defeating elite human professionals
in six-player no-limit Texas hold’em poker, the
most commonly played poker format in the world.
Pluribus’s success shows that despite the lack
of known strong theoretical guarantees on
performance in multiplayer games, there are
large-scale, complex multiplayer imperfect-
information settings in which a carefully con-
structed self-play-with-search algorithm can
produce superhuman strategies.

REFERENCES AND NOTES

1. D. Billings, A. Davidson, J. Schaeffer, D. Szafron, Artif. Intell.
134, 201–240 (2002).

2. J. von Neumann, Math. Ann. 100, 295–320 (1928).
3. J. Nash, Ann. Math. 54, 286 (1951).
4. M. Bowling, N. Burch, M. Johanson, O. Tammelin, Science 347,

145–149 (2015).
5. M. Moravčík et al., Science 356, 508–513 (2017).
6. N. Brown, T. Sandholm, Science 359, 418–424 (2018).
7. J. Schaeffer, One Jump Ahead: Challenging Human Supremacy

in Checkers (Springer-Verlag, New York, 1997).
8. M. Campbell, A. J. Hoane Jr., F.-H. Hsu, Artif. Intell. 134, 57–83

(2002).
9. D. Silver et al., Nature 529, 484–489 (2016).
10. Recently, in the real-time strategy games Dota 2 (20) and

StarCraft 2 (21), AIs have beaten top humans, but as humans
have gained more experience against the AIs, humans have
learned to beat them. This may be because for those two-
player zero-sum games, the AIs were generated by techniques
not guaranteed to converge to a Nash equilibrium, so they do
not have the unbeatability property that Nash equilibrium
strategies have in two-player zero-sum games. (Dota 2
involves two teams of five players each. However, because the
players on the same team have the same objective and are
not limited in their communication, the game is two-player
zero-sum from an AI and game-theoretic perspective.)

11. S. Ganzfried, T. Sandholm, in International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS) (2011),
pp. 533–540.

12. S. Ganzfried, T. Sandholm, ACM Trans. Econ. Comp. (TEAC) 3,
8 (2015). Best of EC-12 special issue.

13. C. Daskalakis, P. W. Goldberg, C. H. Papadimitriou,
SIAM J. Comput. 39, 195–259 (2009).

14. X. Chen, X. Deng, S.-H. Teng, J. Assoc. Comput. Mach. 56, 14
(2009).

15. A. Rubinstein, SIAM J. Comput. 47, 917–959 (2018).
16. K. Berg, T. Sandholm, AAAI Conference on Artificial Intelligence

(AAAI) (2017).
17. M. A. Zinkevich, M. Bowling, M. Wunder, ACM SIGecom

Exchanges 10, 35–38 (2011).
18. G. Tesauro, Commun. ACM 38, 58–68 (1995).
19. D. Silver et al., Nature 550, 354–359 (2017).
20. OpenAI, OpenAI Five, https://blog.openai.com/openai-five/

(2018).
21. O. Vinyals et al., AlphaStar: Mastering the Real-Time Strategy

Game StarCraft II, https://deepmind.com/blog/alphastar-
mastering-real-time-strategy-game-starcraft-ii/ (2019).

22. L. S. Shapley, Advances in Game Theory, M. Drescher,
L. S. Shapley, A. W. Tucker, Eds. (Princeton Univ. Press,
1964).

23. R. Gibson, Regret minimization in games and the development
of champion multiplayer computer poker-playing agents,
Ph.D. thesis, University of Alberta (2014).

24. T. Sandholm, in AAAI Conference on Artificial Intelligence
(AAAI) (2015), pp. 4127–4131. Senior Member Track.

25. T. Sandholm, Science 347, 122–123 (2015).
26. M. Johanson, N. Burch, R. Valenzano, M. Bowling, in

International Conference on Autonomous Agents and Multiagent
Systems (AAMAS) (2013), pp. 271–278.

27. S. Ganzfried, T. Sandholm, in AAAI Conference on Artificial
Intelligence (AAAI) (2014), pp. 682–690.

28. N. Brown, S. Ganzfried, T. Sandholm, in International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS) (2015), pp. 7–15.

29. M. Zinkevich, M. Johanson, M. H. Bowling, C. Piccione, in
Neural Information Processing Systems (NeurIPS) (2007),
pp. 1729–1736.

30. E. G. Jackson, AAAI Workshop on Computer Poker and
Imperfect Information (2013).

31. M. B. Johanson, Robust strategies and counter-strategies:
from superhuman to optimal play, Ph.D. thesis, University of
Alberta (2016).

32. E. G. Jackson, AAAI Workshop on Computer Poker and
Imperfect Information (2016).

33. N. Brown, T. Sandholm, in International Joint Conference on
Artificial Intelligence (IJCAI) (2016), pp. 4238–4239.

34. E. G. Jackson, AAAI Workshop on Computer Poker and
Imperfect Information Games (2017).

35. M. Lanctot, K. Waugh, M. Zinkevich, in M. Bowling,
Neural Information Processing Systems (NeurIPS) (2009),
pp. 1078–1086.

36. M. Johanson, N. Bard, M. Lanctot, R. Gibson, M. Bowling, in
International Conference on Autonomous Agents and Multiagent
Systems (AAMAS) (2012), pp. 837–846.

37. R. Gibson, M. Lanctot, N. Burch, D. Szafron, M. Bowling, in
AAAI Conference on Artificial Intelligence (AAAI) (2012),
pp. 1355–1361.

38. N. Brown, T. Sandholm, AAAI Conference on Artificial
Intelligence (AAAI) (2019).

39. S. Ganzfried, T. Sandholm, in International Joint Conference on
Artificial Intelligence (IJCAI) (2013), pp. 120–128.

40. Here we use the term “subgame” the way it is usually used
in AI. In game theory, that word is used differently by requiring
a subgame to start with a node where the player whose turn it
is to move has no uncertainty about state—in particular, no
uncertainty about the opponents’ private information.

41. N. Brown, T. Sandholm, B. Amos, in Neural Information
Processing Systems (NeurIPS) (2018), pp. 7663–7674.

42. M. Johanson, K. Waugh, M. Bowling, M. Zinkevich, in
International Joint Conference on Artificial Intelligence (IJCAI)
(2011), pp. 258–265.

43. E. P. DeBenedictis, Computer 49, 84–87 (2016).
44. N. Burch, M. Schmid, M. Moravcik, D. Morill, M. Bowling,

in AAAI Conference on Artificial Intelligence (AAAI) (2018),
pp. 949–956.

45. Owing to the presence of AIVAT and because the players did
not know each others’ scores during the experiment, there was
no incentive for the players to play a risk-averse or risk-seeking
strategy to outperform the other human.

ACKNOWLEDGMENTS

We thank P. Ringshia for building a graphical user interface and
thank J. Chintagunta, B. Clayman, A. Du, C. Gao, S. Gross, T. Liao,
C. Kroer, J. Langas, A. Lerer, V. Raj, and S. Wu for playing against
Pluribus as early testing. Funding: This material is based on
Carnegie Mellon University research supported by the National
Science Foundation under grants IIS-1718457, IIS-1617590,
IIS-1901403, and CCF-1733556 and by the ARO under award
W911NF-17-1-0082, as well as XSEDE computing resources provided
by the Pittsburgh Supercomputing Center. Facebook funded the
player payments. Author contributions: N.B. and T.S. designed the
algorithms. N.B. wrote the code. N.B. and T.S. designed the
experiments and wrote the paper. Competing interests: The
authors have ownership interest in Strategic Machine, Inc.,
and Strategy Robot, Inc., which have exclusively licensed prior
game-solving code from the Carnegie Mellon University laboratory
of T.S., which constitutes the bulk of the code in Pluribus.
Data and materials availability: The data presented in this paper
are shown in the main text and supplementary materials. Because
poker is played commercially, the risk associated with releasing the
code outweighs the benefits. To aid reproducibility, we have
included the pseudocode for the major components of our
program in the supplementary materials.

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/365/6456/885/suppl/DC1
Supplementary Text
Table S1
References (46–52)
Data File S1

31 May 2019; accepted 2 July 2019
Published online 11 July 2019
10.1126/science.aay2400

Brown et al., Science 365, 885–890 (2019) 30 August 2019 6 of 6

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at T

exas A
&

M
 U

niversity on O
ctober 15, 2024

https://blog.openai.com/openai-five/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://science.sciencemag.org/content/365/6456/885/suppl/DC1

