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Superhuman AI for heads-up no-limit
poker: Libratus beats top professionals
Noam Brown and Tuomas Sandholm*

No-limit Texas hold’em is the most popular form of poker. Despite artificial intelligence
(AI) successes in perfect-information games, the private information and massive game tree
have made no-limit poker difficult to tackle.We present Libratus, an AI that, in a 120,000-hand
competition, defeated four top human specialist professionals in heads-up no-limit Texas
hold’em, the leading benchmark and long-standing challenge problem in imperfect-information
game solving. Our game-theoretic approach features application-independent techniques: an
algorithm for computing a blueprint for the overall strategy, an algorithm that fleshes out the
details of the strategy for subgames that are reached during play, and a self-improver algorithm
that fixes potential weaknesses that opponents have identified in the blueprint strategy.

I
n recent years, the field of artificial intelli-
gence (AI) has advanced considerably. The
measure of this progress has, in many cases,
beenmarked by performance against humans
in benchmark games. AI programs have de-

feated top humans in checkers (1), chess (2), and
Go (3). In these perfect-information games, both
players know the exact state of the game at every
point. By contrast, in imperfect-information games,
some information about the state of the game is
hidden from a player—for example, the opponent
may hold hidden cards. Hidden information is
ubiquitous in real-worldstrategic interactions—such
as business strategy, negotiation, strategic pricing,
finance, cybersecurity, andmilitary applications—
whichmakes research on general-purpose techni-
ques for imperfect-information games particularly
important.
Hidden information makes a game far more

complex for a number of reasons. Rather than
simply search for an optimal sequence of actions,
an AI for imperfect-information games must de-
termine how to balance actions appropriately,
so that the opponent never finds out too much
about the private information the AI has. For
example, bluffing is a necessary feature in any
competitive-poker strategy, but bluffing all the
time would be a bad strategy. That is, the value
of an action depends on the probability it is
played.
Another key challenge is that different parts

of the game cannot be considered in isolation;
the optimal strategy for a given situation may
depend on the strategy that would be played
in situations that have not occurred (4). As a
consequence, a competitive AI must always con-
sider the strategy for the game as a whole.
Poker has a long history as a challenge prob-

lem for developing AIs that can address hidden
information (5–11). No-limit Texas hold’em is the
most popular form of poker in the world. The
heads-up (that is, two-player) variant prevents
opponent collusion and kingmaker scenarios

where a bad player causes a mediocre player to
shine and therefore allows a clear winner to be
determined. Because of its large size and strate-
gic complexity, heads-up no-limit Texas hold’em
(HUNL) has been the primary benchmark and
challenge problem for imperfect-information game
solving for several years. No prior AI has defeated
top human players in this game.
In this paper we introduce Libratus (12), an

AI that takes a distinct approach to addressing
imperfect-information games. In a 20-day, 120,000-
hand competition featuring a $200,000 prize
pool, it defeated top human professionals in
HUNL. The techniques in Libratus do not use
expert domain knowledge or human data and
are not specific to poker; thus, they apply to a
host of imperfect-information games.

Game-solving approach in Libratus

Libratus features three main modules:
1) The first module computes an abstraction

of the game, which is smaller and easier to solve,
and then computes game-theoretic strategies for
the abstraction. The solution to this abstraction
provides a detailed strategy for the early rounds
of the game, but only an approximation for how
to play in the more numerous later parts of the
game. We refer to the solution of the abstraction
as the blueprint strategy.
2) When a later part of the game is reached

during play, the second module of Libratus
constructs a finer-grained abstraction for that
subgame and solves it in real time (13). Unlike
subgame-solving techniques inperfect-information
games, Libratus does not solve the subgame ab-
straction in isolation; instead, it ensures that
the fine-grained solution to the subgame fits
within the larger blueprint strategy of the whole
game. The subgame solver has several key ad-
vantages over prior subgame-solving techniques
(14–16). Whenever the opponent makes a move
that is not in the abstraction, a subgame is solved
with that action included. We call this nested
subgame solving. This technique comes with a
provable safety guarantee.
3) The third module of Libratus—the self-

improver—enhances the blueprint strategy. It

fills in missing branches in the blueprint ab-
straction and computes a game-theoretic strat-
egy for those branches. In principle, one could
conduct all such computations in advance, but
the game tree is way too large for that to be fea-
sible. To tame this complexity, Libratus uses the
opponents’ actual moves to suggest where in the
game tree such filling is worthwhile.
In the following three subsections, we present

these three modules in more detail.

Abstraction and equilibrium finding:
Building a blueprint strategy

One solution to the problem of imperfect infor-
mation is to simply reason about the entire game
as a whole, rather than just pieces of it. In this
approach, a solution is precomputed for the en-
tire game, possibly using a linear program (10) or
an iterative algorithm (17–21). For example, an
iterative algorithm called counterfactual regret
minimization plus (CFR+) was used to near-
optimally solve heads-up limit Texas hold’em, a
relatively simple version of poker, which has
about 1013 unique decision points (11, 22).
By contrast, HUNL (23) has 10161 decision

points (24), so traversing the entire game tree
even once is impossible. Precomputing a strategy
for every decision point is infeasible for such a
large game.
Fortunately, many of those decision points are

very similar. For example, there is little difference
between a bet of $100 and a bet of $101. Rather
than consider every possible bet between $100
and $20,000, we could instead just consider in-
crements of $100. This is referred to as action
abstraction. An abstraction is a smaller, simpli-
fied game that retains as much as possible the
strategic aspects of the original game. This dras-
tically reduces the complexity of solving the
game. If an opponent bets $101 during an actual
match, then the AI may simply round this to a
bet of $100 and respond accordingly (25–27).
Most of the bet sizes included in Libratus’s action
abstraction were nice fractions or multiples of
the pot [roughly determined by analyzing the
most common bet sizes at various points in the
game taken by prior top AIs in the Annual Com-
puter Poker Competition (ACPC) (28)]. However,
certain bet sizes early in the game tree were de-
termined by an application-independent parameter-
optimization algorithm that converged to a locally
optimal set of bet sizes (29).
An additional form of abstraction is abstraction

of actions takenby chance, that is, card abstraction,
in the case of poker. Similar hands are grouped
together and treated identically. Intuitively, there is
little difference between a king-high flush and a
queen-high flush. Treating those hands as iden-
tical reduces the complexity of the game and thus
makes it computationally easier. Nevertheless,
there are still differences even between a king-
high flush and a queen-high flush. At the highest
levels of play, those distinctions may be the dif-
ference between winning and losing. Libratus
does not use any card abstraction on the first
and second betting rounds. The last two betting
rounds, which have a considerably larger number

RESEARCH

Brown et al., Science 359, 418–424 (2018) 26 January 2018 1 of 7

Computer Science Department, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
*Corresponding author. Email: sandholm@cs.cmu.edu

D
ow

nloaded from
 https://w

w
w

.science.org at T
exas A

&
M

 U
niversity on O

ctober 10, 2024



of states, are abstracted only in the blueprint
strategy. The 55 million different hand possibil-
ities on the third round were algorithmically
grouped into 2.5 million abstract buckets, and
the 2.4 billion different possibilities on the fourth
round were algorithmically grouped into 1.25 mil-
lion abstract buckets. However, the AI does not
follow the blueprint strategy in these rounds and
instead applies nested subgame solving, described
in the next section, which does not use any card
abstraction. Thus, each poker hand is considered
individually during actual play. The card ab-
straction algorithm that we used was similar
to that used in our prior AIs Baby Tartanian8
(30), which won the 2016 ACPC, and Tartanian7
(31–33), which won the 2014 ACPC. (There was
no ACPC in 2015.)
Once the abstraction was constructed, we

computed the blueprint strategy for Libratus
by having the AI play simulated games of poker
against itself (while still exploring the hypothet-
ical outcomes of actions not chosen) using an
improved version of an algorithm calledMonte
Carlo counterfactual regret minimization (MCCFR)
(17, 34, 35), which has a long history of use in

successful poker AIs (30, 31, 36, 37). MCCFRmain-
tains a regret value for each action. Intuitively,
regret represents howmuch the AI regrets having
not chosen that action in the past. When a de-
cision point is encountered during self-play, the
AI chooses actions with higher regret with higher
probability (38). As more and more games are
simulated, MCCFR guarantees that, with high
probability, a player’s average regret for any
action (total regret divided by the number of
iterations played) approaches zero. Thus, the
AI’s average strategy over all simulated games
gradually improves. We will now describe the
equilibrium-finding algorithm (4).
For each simulated game, MCCFR chooses

one player (whomwe refer to as the traverser) that
will explore every possible action and update his
regrets, while the opponent simply plays accord-
ing to the strategy determined by the current
regrets. The algorithm switches the roles of the
two players after each game, that is, a single
hand of poker. Every time either player is faced
with a decision point in a simulated game, the
player will choose a probability distribution over
actions on the basis of regrets for those actions

(which are determined by what he had learned
in earlier games when he had been in that sit-
uation). For the first game, the AI has not learned
anything yet and therefore uses a uniform ran-
dom distribution over actions. At traverser deci-
sion points, MCCFR explores every action in a
depth-first manner. At opponent decision points,
MCCFR samples an action on the basis of the
probability distribution. This process repeats
at every decision point until the game is over and
a reward is received, which is passed up. When a
reward is returned by every action at a traverser
decision point, MCCFR calculates the weighted
average reward for that decision point on the
basis of the probability distribution over actions.
The regret for each action is then updated by
adding the value returned by that action and
subtracting the weighted average reward for the
decision point. The weighted average reward is
then passed up to the preceding decision point,
and so on.
Our improved version of MCCFR traverses

a smaller portion of the game tree on each
iteration. Intuitively, there are many clearly sub-
optimal actions in the game and repeatedly explor-
ing them wastes computational resources that
could be better used to improve the strategy else-
where. Rather than explore every hypothetical al-
ternative action to seewhat its rewardwould have
been, our algorithm probabilistically skips over
unpromising actions that have very negative re-
gret as it proceeds deeper into the tree during a
game (30, 39). In practice, this led to a speedup of
MCCFR by a factor of three and allowed us to solve
larger abstractions than were otherwise possible.
This skipping alsomitigates the problems that

stem from imperfect recall. The state-of-the-art
practical abstractions in the field, including ours,
are imperfect-recall abstractions where some as-
pects of the cards that are on the path of play so
far are intentionally forgotten in order to be able
to computationally afford to have a more detailed
abstraction of the present state of cards (30–32, 40).
Because all decision points in a single abstract
card bucket share the same strategy, updating
the strategy for one of them leads to updating
the strategy for all of them. This is not an issue
if all of the decision points share the same opti-
mal strategy at the solution reached, but, in prac-
tice, there are differences between their optimal
strategies, and they effectively “fight” to push the
bucket’s strategy toward their own optimal strat-
egy. Skipping negative-regret actions means that
decision points that will never be reached in ac-
tual play will no longer have their strategies up-
dated, thereby allowing the decision points that
will actually occur during play tomove the bucket’s
strategy closer to their optimal strategies.
We ran our algorithm on an abstraction that is

very detailed in the first two rounds of HUNL,
but relatively coarse in the final two rounds. How-
ever, Libratus never plays according to the ab-
straction solution in the final two rounds. Rather,
it uses the abstract blueprint strategy in those
rounds only to estimate what reward a player
should expect to receive with a particular hand
in a subgame. This estimate is used to determine
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Fig. 1. Subgame solving. (Top) A subgame (red) is reached during play. Blue and red indicate the
blueprint strategy. The white path indicates the action sequence before the reached subgame.
(Middle) A more-detailed strategy for that subgame is determined by solving an augmented
subgame in which, on each iteration, the opponent is dealt a random poker hand and given the
choice of taking the expected value of the old abstraction (red) or of playing in the new, finer-
grained abstraction (green), where the strategy for both players can change.This forces Libratus to
make the finer-grained strategy at least as good as that in the original abstraction against every
opponent poker hand. (Bottom) The new strategy is substituted in place of the old one.
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a more precise strategy during actual play, as
described in the next section.

Nested safe subgame solving

Although purely abstraction-based approaches have
produced strong AIs for poker (25, 30, 32, 41),
abstraction alone has not been enough to reach
superhuman performance in HUNL. In addition
to abstraction, Libratus builds upon previous re-
search into subgame solving (14–16, 42), in which
a more detailed strategy is calculated for a par-
ticular part of the game that is reached during
play. Libratus features many advances in sub-
game solving that proved critical to achieving
superhuman performance (43).
Libratus plays according to the abstract blue-

print strategy only in the early parts of HUNL,
where the number of possible states is relatively
small and we can afford the abstraction to be ex-
tremely detailed. Upon reaching the third betting
round, or any earlier point in the game where the
remaining game tree is sufficiently small (44),
Libratus constructs a new,more detailed abstrac-
tion for the remaining subgame and solves it in
real time.
However, there is a major challenge with sub-

game solving in imperfect-information games: A
subgame cannot be solved in isolation because
its optimal strategy may depend on other, un-
reached subgames (4). Prior AIs that used real-
time subgame solving addressed this problem by
assuming that the opponent plays according to
the blueprint strategy. However, the opponent
can exploit this assumption by simply switching
to a different strategy. For this reason, the tech-
nique may produce strategies that are far worse
than the blueprint strategy and is referred to as
unsafe subgame solving (42, 45). Safe subgame-
solving techniques, on the other hand, guaran-
tee that the subgame’s new strategy makes the
opponent no better off no matter what strategy
the opponent might use (14). They accomplish
this by ensuring that the new strategy for the
subgame fits within the overarching blueprint
strategy of the original abstraction. Ensuring
the opponent is no better off relative to the
blueprint strategy is trivially possible because
we could just reuse the blueprint strategy. How-
ever, now that the abstraction is more detailed in
the subgame and we can better distinguish the
strategic nuances of the subgame, it may be pos-
sible to find an improvement over the previous

strategy that makes the opponent worse off no
matter what cards she is holding.
We now describe Libratus’s core technique

for determining an improved strategy in a sub-
game. For exposition, we assume player 2 (P2)
is determining an improved strategy against
player 1 (P1). Given that P2’s strategy outside the
subgame is s2, there exists some optimal strategy
s2* that P2 could play in the subgame.Wewould
like to find or approximate s2* in real time. We
assume that, for each poker hand P1 might have,
we have a good estimate of the value P1 receives
in the subgame with that hand by playing op-
timally against s2*, even though we do not know
s2* itself. Although we do not know these values
exactly, we can approximate themwith the values
P1 receives in the subgame in the blueprint strat-
egy. We later prove that if these estimates are
approximately accurate, we can closely approxi-
mate s2*.
To find a strategy close to s2* in the subgame

using only the values from the blueprint, we create
an augmented subgame (Fig. 1) that contains the
subgame and additional structures. At the start
of the augmented subgame, P1 is privately dealt a
random poker hand. Given that P2 plays accord-
ing to s2 before the subgame, and given P1’s dealt
hand, there is a particular probability distribu-
tion over what hands P2 might have in this sit-
uation. P2 is dealt a poker hand according to
this probability distribution. P1 then has the
choice of either entering the subgame (which is
now far more detailed than in the blueprint strat-
egy) or taking an alternative payoff that ends the
augmented subgame immediately. The value of
the alternative payoff is our estimate, according
to the blueprint strategy, of P1’s value for that
poker hand in that subgame. If P1 chooses to
enter the subgame, then play proceeds nor-
mally until the end of the game is reached. We
can solve this augmented subgame just as we
did for the blueprint strategy (46).
For any hand P1might have, P1 can do noworse

in the augmented subgame than just choosing
the alternative payoff (which awards our estimate
of the expected value P1 could receive against
s2*). At the same time, P2 can ensure that for
every poker hand P1 might have, he does no bet-
ter than what he could receive against s2*, be-
cause P2 can simply play s2* itself. Thus, any
solution to the augmented subgame must do
approximately as well as s2*—where the approx-

imation error depends onhow far off our estimates
of P1’s values are. P2 then uses the solution to the
augmented subgame as P2’s strategy going forward.
All of this relied on the assumption that we

have accurate estimates of P1’s values against
s2*. Although we do not know these values ex-
actly, we can approximate themwith values from
the blueprint strategy. We now prove that if
these estimates are approximately accurate, sub-
game solving will produce a strategy that is close
to the quality of s2*. Specifically, we define the
exploitability of a strategy s2 as how much more
s2 would lose, in expectation, against a worst-
case opponent than what P2 would lose, in ex-
pectation, in an exact solution of the full game.
Theorem 1 uses a form of safe subgame solving

that we coin “Estimated-Maxmargin.”We define
a margin for every P1 hand in a subgame as the
expected value of that hand according to the
blueprint minus what P1 could earn with that
hand, in expectation, by entering themore detailed
subgame. Estimated-Maxmargin finds a strategy
that maximizes the minimum margin among
all P1 hands. It is similar to a previous technique
calledMaxmargin (15), except that technique con-
servatively used as themargin what P1 could earn
in the subgame, in expectation, by playing a best
response to P2’s blueprint strategyminus what P1
could earn, in expectation, by entering the more
detailed subgame.

Although safe subgame-solving techniques have
been known for 3 years (14, 15), theywere not used
in practice because empirically they performed
substantially worse than unsafe subgame solving
(42) head to head (48). Libratus features a num-
ber of advances to subgame solving that greatly
improve effectiveness:
1) Although we describe safe subgame solving

as using estimates of P1 values, past techniques
used upper bounds on those values (14, 15). Using
upper bounds guarantees that the subgame so-
lution has exploitability no higher than the blue-
print strategy. However, it tends to lead to overly
conservative strategies in practice. Using estimates
can, in theory, result in strategies with higher
exploitability than the blueprint strategy, but
Theorem 1 bounds how much higher this exploit-
ability can be.
2) Libratus arrives at better strategies in sub-

games than was previously thought possible.
Past techniques ensured that the new strategy
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Fig. 2. A visualiza-
tion of nested sub-
game solving. Every
time a subgame is
reached during play, a
more detailed
abstraction is con-
structed and solved
just for that subgame
while fitting its solu-
tion within the
overarching blueprint
strategy.

Theorem 1. Let si be a strategy for a two-player
zero-sum perfect-recall game, let S be a set of
nonoverlapping subgames in the game, and let
si* be the least-exploitable strategy that differs
from si only in S. Assume that for any opponent
decision point (a hand in the case of poker) and
any subgame in S, our estimate of the opponent’s
value in a best response to si* for that decision
point in that subgame is off by at most D. Apply-
ing Estimated-Maxmargin subgame solving to
any subgame in S reached during play results in
overall exploitability at most 2D higher than that
of si* (47).
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for the subgame made P1 no better off in that
subgame for every situation. It turns out that this
is an unnecessarily strong constraint. For exam-
ple, 2♠7♥ is considered the worst hand in HUNL
and should be folded immediately, which ends
the game. Choosing any other action would re-
sult in an even bigger loss in expectation. Never-
theless, past subgame-solving techniques would
be concerned about P1 having 2♠7♥ in a sub-
game, which is unrealistic. Even if subgame solv-
ing resulted in a strategy that increased the
value of 2♠7♥ a small amount in one subgame,
that increase would not outweigh the cost of
reaching the subgame (that is, the cost of not
folding with 2♠7♥). Thus, P2 can allow the value
of some “unimportant” P1 hands to increase in
subgames, so long as the increase is small enough
that it is still a mistake for P1 to reach the sub-
game with that hand. We accomplish this by
increasing the alternative reward of P1 hands in
the augmented subgame by the extra cost to P1 of
reaching the subgame, that is, the size of the mis-
take P1would have tomake to reach that subgame
with that hand. By increasing the alternative
reward in the augmented subgame of these
unimportant hands, P2 develops a strategy in the
subgame that better defends against hands P1
might actually have (4).
3) Libratus crafts a distinct strategy in re-

sponse to opponent bets, rather than rounding it
to the nearest size in the abstraction. The op-
timal response to a bet of $101 is different from
the optimal response to a bet of $100, but the
difference is likelyminor. For that reason, round-
ing an opponent bet of $101 to $100 is reason-

able. But the optimal response to a bet of $150 is
likely considerably different from the response to
a bet of $100 or a bet of $200. In principle, one
could simply increase the number of actions in
the abstraction, perhaps by considering bets in
increments of $10 rather than $100, so that the
error from rounding is smaller. However, the
size of the abstraction, and the time needed to
solve it, increases prohibitively as more actions
are added.
Therefore, rather than round to the nearest

action, Libratus calculates a unique response in
real time to off-tree actions, that is, an action
taken by an opponent that is not in the abstrac-
tion. Libratus attempts to make the opponent
no better off, no matter what hand the oppo-
nent might have, for having chosen the off-tree
action rather than an action in the abstraction. It
does this by generating and solving an augmented
subgame following the off-tree actionwhere the
alternative payoff is the best in-abstraction action
that the opponent could have taken. (The best ac-
tion may differ across hands.)
Libratus repeats this for every subsequent off-

tree action in a process we call nested subgame
solving (see Fig. 2). Later we provide experiments
that demonstrate that this technique improves
theworst-case performance of poker AIs bymore
than an order ofmagnitude compared to the best
technique for rounding opponent actions to a
nearby in-abstraction action.
4) Because the subgame is solved in real time,

the abstraction in the subgame can also be de-
cided in real time and change between hands.
Libratus leverages this feature by changing, at

the first point of subgame solving, the bet sizes
it will use in that subgame and every subsequent
subgame of that poker hand, thereby forcing the
opponent to continually adapt to new bet sizes
and strategies (49).
The authors of the poker AI DeepStack inde-

pendently and concurrently developed an algo-
rithm similar to nested subgame solving, which
they call continual re-solving (50). In an internet
experiment, DeepStack defeated human profes-
sionals who are not specialists in HUNL. How-
ever, DeepStack was never shown to outperform
prior publicly available top AIs in head-to-head
performance, whereas Libratus beats the prior
leading HUNL poker AI Baby Tartanian8 by a
wide margin, as we discuss later.
Like Libratus, DeepStack computes, in real time,

a response to the opponent’s specific bet and
uses estimates rather than upper bounds on the
opponent’s values. It does not share Libratus’s
improvement of de-emphasizing hands the oppo-
nent would only be holding if she had made an
earlier mistake and does not share the feature
of changing the subgame action abstraction be-
tween hands.
DeepStack solves a depth-limited subgame on

the first two betting rounds by estimating values
at the depth limit by means of a neural network.
This allows it to always calculate real-time re-
sponses to opponent off-tree actions, whereas
Libratus typically plays according to its precom-
puted blueprint strategy in the first two rounds.
Because Libratus typically plays according to a

precomputed blueprint strategy on the first two
betting rounds, it rounds an off-tree opponent bet
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Fig. 3. Libratus performance against top humans. Shown are the results of the 2017 Brains vs. Artificial Intelligence: Upping the Ante competition. The
95% confidence intervals (if the games are treated as independent and identically distributed) are shown as dotted lines.

Table 1. Exploitability of subgame-solving techniques on smaller poker variants. Shown is the comparison in exploitability of safe subgame-solving and

unsafe subgame-solving techniques to no subgame-solving techniques for three medium-sized poker variants. Exploitability measures performance against

a worst-case adversary.

Subgame-solving technique Small two-round hold’em (mbb/game) Large two-round hold’em (mbb/game) Three-round hold’em (mbb/game)

No subgame solving 91.3 41.3 346
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Unsafe subgame solving 5.51 397 79.3
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Safe subgame solving 22.6 9.84 72.6
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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size to a nearby in-abstraction action. The blue-
print action abstraction on those rounds is dense
in order to mitigate this weakness. In addition,
Libratus has a unique self-improvementmodule
to augment the blueprint strategy over time,
which we now introduce.

Self-improvement

The third module of Libratus is the self-improver.
It enhances the blueprint strategy in the back-
ground. It fills in missing branches in the blue-
print abstraction and computes a game-theoretic
strategy for those branches. In principle, one
could conduct all such computations in advance,
but the game tree is way too large for that to be
feasible. To tame this complexity, Libratus uses
the opponents’ actual moves to suggest where in
the game tree such filling is worthwhile.
The way machine learning has typically been

used in gameplaying is to try to build an opponent
model, find mistakes in the opponent’s strategy
(e.g., folding too often, calling too often, and so on),
and exploit those mistakes (51–53). The downside
is that trying to exploit the opponent opens up
oneself to being exploited. [A certain conservative
family of exploitation techniques constitutes the
sole exception to this downside (51–53).] For that
reason, to a first approximation, Libratus did not
perform opponent exploitation. Instead, it used
the data of the bet sizes that the opponents used
to suggestwhich branches should be added to the
blueprint, and it then computed game-theoretic
strategies for those branches in the background.
In most situations that can occur in the first

two betting rounds, real-time subgame solving
as used in Libratus would likely not produce a
better strategy than the blueprint, because the
blueprint already uses no card abstraction in
those rounds and conducting subgame solving
in real time so early in the game tree would re-
quire heavy abstraction in the subgame. For
these reasons, Libratus plays according to the

precomputed blueprint
strategy in these situa-
tions. In those rounds,
there aremany bet sizes
in the abstraction, so the
error from rounding to
a nearby size is small.
Still, there is some error,
and this couldbereduced
by including more bet
sizes in the abstraction.
In theexperimentagainst

human players described in the next section,
Libratus analyzed the bet sizes in the first betting
round that were most heavily used by its oppo-
nents in aggregate during each day of the com-
petition. On the basis of the frequency of the
opponent bet sizes and their distance from the
closest bet size in the abstraction, Libratus chose
k bet sizes for which it would try to calculate a
response overnight (54). Each of those bet sizes
for which reasonable convergence had been
reached by the morning was then added to the
blueprint strategy together with the newly com-
puted strategy following that bet size. In this
way, Libratus was able to progressively narrow
its gaps as the competition proceeded by leverag-
ing the humans’ ability to find potential weak-
nesses. Furthermore, these fixes to its strategy are
universal: They work against all opponents, not
just the opponents that Libratus has faced.
Libratus’s self-improvement comes in two forms.

For one of them, when adding one of the k bet
sizes, a default sibling bet size is also used during
the equilibrium finding so as to not assume that
the opponent necessarily only uses the bet size
that will be added. For the other, a default bet
size is not used. This can be viewed asmore risky
and even exploitative, but Libratus mitigates the
risk by using that part of the strategy during play
only if the opponent indeed uses that bet size
most of the time (4).

Experimental evaluation

To evaluate the strength of the techniques used
in Libratus, we first tested the overall approach
of the AI on scaled-down variants of poker
before proceeding to tests on full HUNL. These
moderate-sized variants consisted of only two or
three rounds of betting rather than four, and, at
most, three bet sizes at each decision point. The
smaller size of the games allowed us to precisely
calculate exploitability, the distance from an op-
timal strategy. Performance was measured in

milli–big blinds per game (mbb/game), the aver-
age number of big blinds won per 1000 games.
In the first experiment, we compared using no

subgame solving, unsafe subgame solving (42)
(in which a subgame is solved in isolation with
no theoretical guarantees on performance), and
safe subgame solving just once upon reaching
the final betting round of the game. Both players
were constrained to choosing among only two
different bet sizes, so off-tree actions were not
an issue in this first experiment. The results are
shown in Table 1. In all cases, safe subgame solv-
ing reduced exploitability by more than a factor
of four relative to no subgame solving. In one
case, unsafe subgame solving led to even lower
exploitability, whereas in another it increased
exploitability by nearly an order of magnitude
more than if no subgame solving had been used.
This demonstrates that although unsafe subgame
solving may produce strong strategies in some
games, itmay also lead to far worse performance.
Safe subgame solving, in contrast, reduced ex-
ploitability in all games.
In the second experiment, we constructed an

abstraction of a game which only includes two
of the three available bet sizes. If the opponent
played the missing bet size, the AI either used
action translation [in which the bet is rounded
to a nearby size in the abstraction; we compared
against the leading action-translation technique
(27)] or nested subgame solving. The results are
shown in Table 2. Nested subgame solving re-
duced exploitability by more than an order of
magnitude relative to action translation.
Next, we performed experiments in full HUNL.

After constructing Libratus, we tested the AI
against the prior leading HUNL poker AI, our
2016 bot Baby Tartanian8, which had defeated
all other poker AIs with statistical significance
in the most recent ACPC (55). We report average
win rates followed by the 95% confidence interval.
By using only the raw blueprint strategy, Libratus
lost to Baby Tartanian8 by 8 ± 15 mbb/game.
Adding state-of-the-art postprocessing on the
third and fourth betting rounds (31), such as elim-
inating low-probability actions that are likely
only positive owing to insufficient time to reach
convergence, led to the Libratus blueprint strat-
egy defeating Baby Tartanian8 by 18 ± 21 mbb/
game. Eliminating low-probability actions empir-
ically leads to better performance against non-
adjusting AIs. However, it also increases the
exploitability of the AI because its strategy be-
comes more predictable. The full Libratus agent
did not use postprocessing on the third and fourth
betting rounds. On the first two rounds, Libratus
primarily used a new, more robust form of post-
processing (4).
The next experiment evaluated nested sub-

game solving (with no postprocessing) using only
actions that are in Baby Tartanian8’s action ab-
straction. Libratus won by 59 ± 28 mbb/game
(56). Finally, applying the nested subgame-solving
structure used in the competition resulted in
Libratus defeating Baby Tartanian8 by 63 ± 28
mbb/game. The results are shown in Table 3. In
comparison, Baby Tartanian8 defeated the next
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Table 2. Exploitability of nested subgame solving. Shown is the

comparison to no nested subgame solving (which instead uses the

leading action translation technique) in a small poker variant.

Nested subgame-solving approach Exploitability (mbb/game)

No nested subgame solving 1465
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Nested unsafe subgame solving 148
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Nested safe subgame solving 119
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Table 3. Head-to-head performance of Libratus. Shown are results for the Libratus blueprint

strategy as well as forms of nested subgame solving against Baby Tartanian8 in HUNL.

Version of Libratus Performance against Baby Tartanian8 (mbb/game)

Blueprint –8 ± 15
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Blueprint with postprocessing 18 ± 21
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

On-tree nested subgame solving 59 ± 28
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Full nested subgame solving 63 ± 28
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...
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two strongest AIs in the ACPC by 12 ± 10 and 24 ±
20 mbb/game.
Finally, we tested Libratus against top humans.

In January 2017, Libratus played against a teamof
four topHUNL-specialist professionals in a 120,000-
hand Brains vs. Artificial Intelligence: Upping the
Ante challenge match over 20 days. The partic-
ipantswere JasonLes, DongKim,DanielMcCauley,
and Jimmy Chou. A prize pool of $200,000 was
allocated to the four humans in aggregate. Each
human was guaranteed $20,000 of that pool. The
remaining $120,000 was divided among them on
the basis of how much better the human did
against Libratus than the worst-performing of the
four humans. Libratus decisively defeated the hu-
mans by a margin of 147 mbb/game, with 99.98%
statistical significance and a P value of 0.0002 (if
the hands are treated as independent and iden-
tically distributed) [see Fig. 3; (57)]. It also beat
each of the humans individually.

Conclusions

Libratus presents an approach that effectively ad-
dresses the challenge of game-theoretic reasoning
under hidden information in a large state space.
The techniques that we developed are largely do-
main independent and can thus be applied to
other strategic imperfect-information interac-
tions, including nonrecreational applications.
Owing to the ubiquity of hidden information in
real-world strategic interactions, we believe the
paradigm introduced in Libratus will be impor-
tant for the future growth and widespread ap-
plication of AI.
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