Simultaneous Abstraction and Equilibrium Finding in Games

Noam Brown
Computer Science Department
Carnegie Mellon University
noamb@cs.cmu.edu

Abstract

A key challenge in solving extensive-form games is
dealing with large, or even infinite, action spaces.
In games of imperfect information, the leading ap-
proach is to find a Nash equilibrium in a smaller
abstract version of the game that includes only a
few actions at each decision point, and then map
the solution back to the original game. However,
it is difficult to know which actions should be in-
cluded in the abstraction without first solving the
game, and it is infeasible to solve the game without
first abstracting it.

We introduce a method that combines abstraction
with equilibrium finding by enabling actions to be
added to the abstraction at run time. This allows
an agent to begin learning with a coarse abstrac-
tion, and then to strategically insert actions at points
that the strategy computed in the current abstrac-
tion deems important. The algorithm can quickly
add actions to the abstraction while provably not
having to restart the equilibrium finding. It enables
anytime convergence to a Nash equilibrium of the
full game even in infinite games. Experiments show
it can outperform fixed abstractions at every stage
of the run: early on it improves as quickly as equi-
librium finding in coarse abstractions, and later it
converges to a better solution than does equilibrium
finding in fine-grained abstractions.

1 Introduction

A central challenge in solving imperfect-information games
is that the game may be far too large to solve with an
equilibrium-finding algorithm. For example, two-player No-
Limit Texas Hold’em poker, a popular game among hu-
mans and a leading testbed for research on solving imperfect-
information games, has more than 10'%> nodes in the game
tree and 10! information sets [Johanson, 2013]. For such
games, abstraction has emerged as a key approach: a smaller,
more tractable version of the game that maintains many
of its strategic features is created [Shi and Littman, 2002;
Billings et al., 2003; Gilpin and Sandholm, 2007; 2006;
Lanctot et al., 2012; Johanson et al., 2013; Kroer and Sand-
holm, 2014a; Ganzfried and Sandholm, 2014; Brown et al.,

Tuomas Sandholm
Computer Science Department
Carnegie Mellon University
sandholm@cs.cmu.edu

2015]. In the abstract game, a player is constrained to be-
having identically in a set of situations. The abstract game is
then solved for (near-) equilibrium, and its solution (i.e., the
strategies for all players) mapped back to the full game. In-
tuitively, an abstraction should retain “important” parts of the
game as fine-grained as possible, while strategically similar
or unimportant states could be grouped together. However,
the key problem is that it is difficult to determine which states
should be abstracted without knowing the equilibrium of the
game. This begets a chicken-and-egg problem.

One approach is to solve for equilibrium in one abstraction,
then use the equilibrium strategies to guide the generation of
the next abstraction, and so on. Such strategy-based abstrac-
tion has been applied by going around that loop twice in Texas
Hold’em, and within each iteration of the loop manually set-
ting the abstraction (for the first betting round of the game)
based on the equilibrium that was found computationally in
the previous abstraction [Sandholm, 2010].

Another issue is that even if an equilibrium-finding algo-
rithm in a given abstraction could determine what parts of the
game are (un)important, the equilibrium-finding algorithm
would have to be run from scratch on the new abstraction.

A related issue is that a given abstraction is good in the
equilibrium-finding process only for some time. Coarse ab-
stractions yield good strategies early in the run while larger,
fine-grained abstractions take longer to reach reasonable
strategies but yield better ones in the long run. Therefore,
the abstraction size is typically hand crafted to the anticipated
available run time of the equilibrium-finding algorithm using
intuition and past experience with the approach.

There has been a great deal of research on generating good
abstractions before equilibrium finding. Most of that work
has focused on information abstraction, where a player is
forced to ignore certain information in the game. Less re-
search has gone into action abstraction (restricting the set of
actions available to a player). Action abstraction has typically
been done by hand using domain-specific knowledge (with
some notable recent exceptions [Sandholm and Singh, 2012;
Kroer and Sandholm, 2014a; 2014b]).

Beyond the manual strategy-based abstraction mentioned
above, there has been a very limited amount of work on in-
terleaving abstraction and equilibrium finding. Hawkin et
al. [2011; 2012] proposed algorithms that adjust the sizes of
some actions (some bet sizes in no-limit poker) in an abstrac-



tion during equilibrium finding, without convergence guaran-
tees. Brown et al. [2014] presented an algorithm that adjusts
action sizes during equilibrium finding in a way that guar-
antees convergence if the player’s equilibrium value for the
game is convex in the action-size vector. Those approaches
seem to work for adjusting a small number of action sizes.
A recent paper uses function approximation, which could be
thought of as a form of abstraction, within equilibrium find-
ing [Waugh et al., 2015]. None of those approaches change
the number of actions in the abstraction and thus cannot be
used for growing (refining) an abstraction.

We present an algorithm that intertwines action abstraction
and equilibrium finding. It begins with a coarse abstraction
and selectively adds actions that the equilibrium-finding al-
gorithm deems important. It overcomes the chicken-and-egg
problem mentioned above and does not require knowledge of
how long the equilibrium-finding algorithm will be allowed to
run. It can quickly—in constant time—add actions to the ab-
straction while provably not having to restart the equilibrium
finding. Experiments show it outperforms fixed abstractions
at every stage of the run: early on it improves as quickly as
equilibrium finding in coarse abstractions, and later it con-
verges to a better solution than does equilibrium finding in
fine-grained abstractions.

2 Setting, Notation, and Background

This section presents the notation we use. In an imperfect-
information extensive-form game there is a finite set of play-
ers, P. H is the set of all possible histories (nodes) in the
game tree, represented as a sequence of actions, and includes
the empty history. A(h) is the actions available in a history
and P(h) € PUc s the player who acts at that history, where
¢ denotes chance, which plays an action a € A(h) with a
fixed probability o.(h,a) that is known to all players. The
history h’ reached after an action is taken in h is a child of
h, represented by h — a = h’, while h is the parent of h'.
More generally, i’ is an ancestor of h, represented by b’ T h,
if there exists a sequence of actions from h' to h. Z C H
are terminal histories for which no actions are available. For
each player i € P, there is a payoff function u; : Z — R.
If P = {1,2} and u1 = —ug, the game is a zero-sum
game. We define A; = max,cz u;(2) — min,ez u;(z) and
A= max; Ai

Imperfect information is represented by information sets
for each player ¢ € P by a partition Z; of h € H : P(h) = i.
For any information set I € Z;, all histories h,h’ € I are
indistinguishable to player i, so A(h) = A(h'). I(h) is the
information set I where h € I. P(I) is the player ¢ such that
I € 7;,. A(I) is the set of actions such that for all h € I,
A(I) = A(h). |A;| = maxyez, |[A()| and |A| = max; |A;].

A strategy o;(I) is a probability vector over A(I) for
player 7 in information set I. The probability of a particular
action a is denoted by o;(I, a). Since all histories in an in-
formation set belonging to player ¢ are indistinguishable, the
strategies in each of them must be identical. For all h € I,
oi;(h) = o;(I) and o;(h,a) = o0;(I,a). We define o; as
a probability vector for player ¢ over all available strategies
>; in the game. A strategy profile o is a tuple of strategies,

one for each player. wu;(0;,0_;) is the expected payoff for
player ¢ if all players play according to the strategy profile
(04,0_;). If a series of strategies are played over T itera-

tions, then 6iT = Ztg%

77 (h) = Il —achopn)(h,a) is the joint probability of
reaching h if all players play according to o. 77 (h) is the
contribution of player ¢ to this probability (that is, the prob-
ability of reaching h if all players other than ¢, and chance,
always chose actions leading to h). 77,(h) is the contribu-
tion of all players other than 4, and chance. 77 (h,h’) is the
probability of reaching i’ given that h has been reached, and
0if h Z h'. In a perfect-recall game, which we limit our
discussion to in this paper, Vh, b’ € I € I;, w;(h) = m;(h').
Therefore, for i = P(I) we define m;(I) = m;(h) for h € I.

— §3te7~Wf20§(1)
C Sierm (D)

In perfect-information games, a subgame is a subtree—
rooted at some history—of the game tree. For convenience,
we define an imperfect information subgame (1ISG). If a his-
tory is in an IISG, then any other history with which it shares
an information set must also be in the IISG. Moreover, any
descendent of the history must be in the IISG. Formally, an
IISG is a set of histories S C H such that for all h € S, if
h C B, then ' € S, and for all h € S, if ' € I(h) for
some I € Zp(y) then h' € S. The head of an 1ISG S, is the
union of information sets that have actions leading directly
into .S, but are not in S. Formally, .S, is a set of histories such
that for all h € S,, either h ¢ S and Ja € A(h) such that
h — a € S,or h € I and for some history b’ € I, b/ € S,.
We define the greater subgame S* = S U S,..

For equilibrium finding we use counterfactual regret
minimization (CFR), a regret-minimization algorithm for
extensive-form games [Zinkevich et al., 2007]. Recent re-
search that finds close connections between CFR and other
iterative learning algorithms [Waugh and Bagnell, 2015] sug-
gests that our techniques may extend beyond CFR as well.

Our analysis of CFR makes frequent use of counterfactual
value. Informally, this is the expected utility of an informa-
tion set given that player ¢ tries to reach it. For player ¢ at
information set I given a strategy profile o, this is defined as

(=3 (wii(h) 3 (= (h, z)ui(z))) (1)
hel 2€Z
The counterfactual value of an action a is

o (La) =3 (77D (77 (h = a,2)uil2)) ) @)

hel z€Z

We define the average strategy to be 5 (1)

Let ot be the strategy profile used on iteration ¢. The in-
stantaneous regret on iteration t for action ¢ in information
set I is ri(I,a) = v;t(j)(f,a) - v}’;(l)(f). The regret for
action a in I on iteration 7" is

R'(I,a)=> r(I,a) 3)
teT
Additionally, RT(I,a) = max{R”(I,a),0} and R*(I) =
max,{R% (I, a)}. Regret for player i in the entire game is
RT

| = max ui(ol, 0 ;) —ui(of, 0" ) 4)

~i
iSNi e



In CFR, a player in an information set picks an action
among the actions with positive regret in proportion to those
regrets (and uniformly if all regrets are nonpositive). If a
player plays according to CFR on every iteration, then on

iteration 7, RT(I) < A;\/]A(I)][VT. Moreover, R} <

S ez, BT (1) < |T|AW/[AIVT. So,as T — o0, % — 0,

In two-player zero-sum games, CFR converges to a

Nash equilibrium, i.e., a strategy profile o* such that Vi,

ui(0f,0;) = maxgex, ui(o],0*;). An e-equilibrium

is a strategy profile o* such that Vi, u;(0},0",) + € >
T

max,ex, u;(0;,0%;). If both players’ average regrets Ig:’ <

¢, their average strategies (51 , 52 ) form a 2e-equilibrium.

3 Adding Actions to an Abstraction

A central challenge with abstraction is its inflexibility to
change during equilibrium finding. After many iterations of
equilibrium finding, one may determine that certain actions
left out of the abstraction are actually important. Adding to an
abstraction has been a recurring topic of research [Waugh et
al., 2009a; Gibson, 2014]. Prior work by Burch et al. [2014]
examined how to reconstruct a Nash equilibrium strategy for
an IISG after equilibrium finding completed by storing only
the counterfactual values of the information sets in the head
of the IISG. Jackson [2014] presented a related approach that
selectively refines IISGs already in the abstraction after equi-
librium finding completed. However, no prior method has
guaranteed convergence to a Nash equilibrium if equilibrium
finding continues after actions are added to an abstraction.
The algorithm we present in this section builds upon these
prior approaches, but provides this key theoretical guarantee.
In this section we introduce a general approach for adding
actions to an abstraction at run time, and prove that we still
converge to a Nash equilibrium. We discuss specifically
adding IISGs. That is, after some number T of CFR iter-
ations in a game I', we wish to add some actions leading to
an IISG S, forming I”. A trivial way to do this is to sim-
ply restart equilibrium finding from scratch after the IISG is
added. However, intuitively, if the added IISG is small, its
addition should not significantly change the optimal strategy
in the full game. Instead of restarting from scratch, we aim
to preserve, as much as possible, what we have learned in I,
without weakening CFR’s long-term convergence guarantee.
The key idea to our approach is to act as if S had been in the
abstraction the entire time, but that the actions in S, leading to
S were never played with positive probability. Since we never
played the actions in S,, we may have accumulated regret
on those actions in excess of the bounds guaranteed by CFR.
That would hurt the convergence rate. Later in this section we
show that we can overcome this excess regret by discounting
the prior iterations played (and thereby their regrets as well).
The factor we have to discount by increases the higher the
regret is, and the more we discount, the slower the algorithm
converges because it loses some of the work it did. Therefore,
our goal is to ensure that the accumulated regret is as low
as possible. The algorithm we present can add actions for
multiple players. In our description, we assume without loss
of generality that the added actions belong to Player 1 (Py).

We now discuss how to “fill in” what happened in IISG
S during those T iterations. Since the actions leading to S
were never played, we have that for any history h ¢ S and
any leaf node z € S, 77 (h, z) = 0forallt € Ty. By
the definitions of counterfactual value (2) and regret (3) this
means that regret for all actions in all information sets outside
the greater subgame S™* remain unchanged after adding S.
We therefore need only concern ourselves with S*.

From (2) and (3) we see that R'(I,a) o« 7% (h) for h € I.
Since S was never entered by P;, for every history in S
and every player other than P, 7th,t-(h) = 0 and therefore
RY(I,a) = 0, regardless of what strategy they played. Nor-
mally, an information set’s strategy is initialized to choose an
action randomly until some regret is accumulated. This is ob-
viously a poor strategy; had P;’s opponents played this way
in S for all Tj iterations, P; may have very high regret in
S, for not having entered S and taken advantage of this poor
play. Fortunately, they need not have played randomly in S.
In fact, they need not have played the same strategy on every
iteration. We have complete flexibility in deciding what the
other players played. Since our goal is to minimize overall
regret, it makes sense to have them play strategies that would
result in low regret for P; in .S,

We construct an auxiliary game to determine regrets for
one player and strategies for the others. Specifically, similar
to the approach in [Burch ef al., 2014], we define a recov-

1..T
ery game S;"  for an IISG S for player i of a game I" and
sequence of strategy profiles o7, The game consists of an
initial chance node leading to a history h* € S,. with proba-

bility! ¢
g > ier ™2i(h7)
Dnresy 2orer ™4 (h7)
If this is undefined, then all information sets in S* have zero
regret and we are done. In each h € Sy, P; has the choice of
either taking the weighted average counterfactual value of the
Sierv? (1)
P Yier 75D
leading into S, where play continues in S until a leaf node is
reached. We play T's = > ;.cq D ier Wifi(h*) iterations
of CFR (or any other regret-minimization algorithm) in the
recovery game.

We now define the combined game I' + S of a game I’

&)

information set I = I(h) , or of taking the action

1.7
and an IISG S following play of a recovery game S;"  as
the union of I and S with regret and average strategy set as
follows. For any action a belonging to I such that I — a ¢
S, Rrys(I,a) = Rr(I,a). Otherwise, if P(I) # i then
Rrys(l,a) =0.If P(I) =dand I C Sthen Rr1s(I,a) =
Rs(I,a). In the case that I — a € Sbut I ¢ S, then

RF+S(Iv a) = ZteTs v;’s(]"a) — 2uteT U;’F(I)'
If I € T then 61, 4(I) = 6 (I). Otherwise, if P(I) =i
then &%, 4(I) = 0, and if P(I) # i then 61 4(I) = G5 ().

"In two-player games without sampling of chance nodes,

dier ﬂftl(h) is easily calculated as the product of }, .. 3" (D)
for the last information set I of P» before h, and multiplying it by
oc(a’|k) for all chance nodes k' C h where b’ — o’ C h.



The theorem below proves that this is equivalent to having
played a sequence of iterations in I' 4+ S from the beginning.
The power of this result is that if we play according to CFR
separately in both the original game I" and the recovery game

1.7
Sf T, then the regret of every action in every information
set of their union is bounded according to CFR (with the im-
portant exception of actions in S, leading to S, which the
algorithm handles separately as described after the theorem).

Theorem 1. Assume T iterations were played in I and then
1..T

Tg iterations were played in the recovery game Sf T and
these are used to initialize the combined game I" + S. Now
consider the uninitialized game T identical to T + S. There
exists a sequence of T' iterations (where |T'| = |Ts||T)) in
I such that, after weighing each iteration by |Tl—‘ forany ac-

tion a in any information set I € T", R%//( a) = RF+S( a)
and 51, (I) = of, 5 (I).

Proofs are presented in an extended version of this paper.

As mentioned earlier, if we played according to CFR in
both the original abstraction and the recovery game, then we
can ensure regret for every action in every information set in
the expanded abstraction is under the bound for CFR, with the
important exception of actions a in information sets I € S,
such that for h € I, h — a € S. This excessive regret can
hurt convergence in the entire game.

Fortunately, Brown and Sandholm [2014] proved that if an
information set I exceeds a bound on regret, then one can dis-
count all prior iterations in order to maintain CFR’s guaran-
tees on performance. However, their theorem requires all in-
formation sets to be scaled according to the highest-regret in-
formation set in the game. This is problematic in large games
where a small rarely-reached information set may perform
poorly and exceed its bound significantly. We improve upon
this in the theorem below.

We will find it useful to deﬁne weighted regret

T
= me )+ riila) (6)
t=1
and weighted average strategy
T T
th:I pUt,i (a) + Ztil pUt,i(a) (7)
wT + TQ

Theorem 2. Suppose T iterations were played in some game.
Choose any weight w; such that

2

ZIEL: ZaGA(I) (RI(L a))

If we weigh the T iterations by w;, then after T' additional it-
erations of CFR, Ry, 1 ; < |L;|Ai/|AilvwiT + T7, where

max RT(I,a)?

T’ > max{T, = Zazg(‘i{‘ +(00) I

Corollary 1. In a two-player zero-sum game, if we weigh
the T iterations by w = min;{w; }, then after T' additional
iterations, the players’ weighted average strategies constitute

a 2e-equilibrium where
ax [ EilAi V] A
i NwT 4+ T

RT T2 ’L

pc’%},Tg,i (CL) =

0 < w; <min {1,

€ =1

While using the largest w that our theory allows may
seem optimal according to the theory, better performance is
achieved in practice by using a lower w. This is because CFR
tends to converge faster than its theoretical bound. Say we
add IISG S to an abstraction I" using a recovery game to form
I'+S. Let S;, T';, and (I'+ .5); represent the information sets
in each game belonging to player ¢. Then, based on experi-
ments, we recommend using

2 2
_ ZIED: Za (RI(I’ a)) + ZIES,- Za (RI(I’ a))
o 2
Yreris), 2oa (RE(I,a))
9)
where the numerator uses the regret of I C S, before adding

the IISG, and the denominator uses its regret after adding the
IISG. This value of w; also satisfies our theory.

3.1 Adding Actions with Regret Transfer

In certain games, it is possible to bypass the recovery game
and add subtrees in O(1). We accomplish this with an
approach similar to that proposed by Brown and Sand-
holm [2014], who showed that regret can be transferred from
one game to another in O(1) in special cases.

Suppose we have an IISG S; in I" and now wish to add
a new IISG S, that has identical structure as S7. Instead
of playing according to the recovery game, we could (hy-
pothetically) record the strategies played in S; on every it-
eration, and repeat those strategies in S3. Of course, this
would require huge amounts of memory, and provide no ben-
efit over simply playing new strategies in Sy through the re-
covery game. However, it turns out that this repetition can be
done in O(1) time in certain games.

Suppose all payoffs in S; are functions of a vector 0,. For
example, in the case of 51 being a scalar, one payoff might be
ui(z1) = .01 + B .. Now suppose the payoffs in S are
identical to their correspondlng payoffs in 57, but are func-
tions of 0, instead of f;. The corresponding payoff in S
would be u;(z2) = ;.02 + B;, .. Suppose we play T itera-
tions and store regret in S} as a function of 0. Then we can
immediately “repeat” in S the 7" iterations that were done in
S1 by simply copylng over the regrets in 51 that were stored
as a function of 91, and replacing 91 with 92

Unlike the method of Brown and Sandholm [2014], it is
not necessary to store regret in the entire game as a function
of 67, just the regret in S7. This is because when we transfer
to Sa, the “replaying” of iterations in S5 has no effect on the
rest of the game outside of S5. Moreover, if 51 is entirely
determined by one player, say P, then there is no need to
store regret for P, as a function of g, because P»’s regret will
be set to 0 whenever we add an IISG for P;.

This can be extremely useful. For example, suppose when-
ever P, takes an action that sets 01, that in any subsequent in-
formation set belonging to P, all reachable payoffs are mul-
tiplied by 91 Then subsequent regrets need not be stored as a
function of 91, only the information sets that can choose 91
This is very useful in games like poker, where bets are viewed
as multiplying the size of the pot and after P; bets, if P» does



not immediately fold, then every payoff is multiplied by the
size of the bet. In that case, regret for an action need only be
stored as a function of that action’s bet size.

It is also not strictly necessary for the structure of the IISGs
to be identical. If S has additional actions that are not present
in S1, one could recursively add IISGs by first adding the
portion of S5 that is identical to .S;, and then adding the ad-
ditional actions either with regret transfer internally in Ss,
or with a recovery game. However, if So has fewer actions
than S7, then applying regret transfer would imply that ille-
gal actions were taken, which would invalidate the theoretical
guarantees.

Typically, slightly less discounting is required if one uses
the recovery game. Moreover, regret transfer requires extra

memory to store regret as a function of 6. However, being
able to add an IISG in O(1) is extremely beneficial, particu-
larly for large IISGs.

4 Exploitability Computation in Games with
Large or Continuous Action Spaces

In two-player zero-sum games, we can quickly evaluate how
close a strategy profile is to a Nash equilibrium by cal-
culating the exploitability of the strategy for each player.
If v is the value of a Nash equilibrium solution for
player 4, then exploitability of player i is e;(0;) = v} —
ming ex_, ui(0i, 0 ;). In order to calculate the exploitabil-
ity in the full game of a player’s abstraction strategy, it is nec-
essary to define the player’s strategy in situations that do not
arise in the abstraction—because the opponent(s) (and per-
haps also chance) may take actions that are not included in
the abstraction. Typically, this is accomplished by mapping
an action not in the abstraction to one that is. This is referred
to as action translation, and empirical results have shown that
the randomized pseudo-harmonic mapping [Ganzfried and
Sandholm, 2013] performs best among techniques developed
to date.

To calculate exploitability in a game, it is typically neces-
sary to traverse the entire game. This is infeasible in large and
infinite games. However, in situations where a player maps a
range of actions to a single abstract action, it may be possi-
ble to express the exploitability of each action as a function
whose maximum is easy to find. With that we can calculate
exploitability in the original (unabstracted) game by travers-
ing only the abstraction.

We now define one class of such games. Consider the
case of an abstraction that maps a range of full-game actions
[L;,Ur] € Rin I to a single abstract action a, and suppose
an action § € [Ly, U] is taken. Suppose further that for ev-
ery information set I’ in the abstraction belonging to P(I)
and reachable from [ following a, any payoff z that can be
reached from I’ has a payoff that is multiplied by 6. That is,
for any history 2’ € I’ and z € Z such that 7(h/,z) > 0,
we have up()(2) = fujp D (z). Since the abstraction maps

all actions 6 € [Ly, U] to the same state, the abstraction will
play identically regardless of which 6 is chosen. With that
in mind, since every reachable payoff is scaled identically,
each choice of 6 results in a strategically identical situation

for P(I). Thus, rather than choosing a specific #, we can in-
stead choose the entire range [Ly, Us]. Our traversal will then
return the entire expected payoff as a function of 6, and we
can then choose the value that would maximize the function.

We use this approach in our full-game exploitability calcu-
lation, allowing us to calculate exploitability in a full game of
infinite size.

5 Where and When to Add Actions?

In previous sections we covered how one can add actions to
an abstraction during equilibrium finding. In this section, we
discuss where in the game, and when, to add actions.

Each iteration of CFR takes O(H) time. If useless IISGs
are added, this will make each iteration take longer. We there-
fore need some method of determining when it is worthwhile
to add an action to an abstraction. Generally our goal in
regret-minimization algorithms is to keep average overall re-
gret low. Thus, the decision of where and when to add an
information set will depend on how best we can minimize
overall regret. Regret in information sets where we play CFR
is O(v/T), while regret in information sets not played accord-
ing to CFR is O(T'). So, intuitively, if an information set has
low regret, we would do a better job of minimizing average
regret by not including it in the abstraction and doing faster
iterations. But as it accumulates regret in O(T), eventually
we could better minimize average regret by including it in the
abstraction.

Following this intuition, we propose the following formula
for determining when to add an action. Essentially, it deter-
mines when the derivative of summed average regret, taken
with respect to the number of nodes traversed, would be more
negative with the IISG added. It assumes that regrets for ac-
tions not in the abstraction grow at rate ~ 1" while all other
regrets grow at rate ~ \/T .

Proposition 1. Consider a game T 4+ S consisting of a main
game ' and IISG S. Assume a player i begins by playing
CFR only in T, so that each iteration takes O(|L'|), but at
any time may choose to also play CFR in S (after which each
iteration takes O(|T'| +|S|)). Assume that when playing CFR
on an information set I, squared regret for an action a where
Vh € I, h — a € I grows by a fixed amount every iteration:

(RTH(I,a))2 = (R™(I, a))2 + Cf for some constant Cf.
Assume that for others actions (R (I, a))2 = C[T?. Then

the optimal point to begin playing CFR in S is on the earliest
iteration T" where

T 7!
Siezp;, BT Trerp , BTN+ Tpezg, @RT) - £
: - :
I T| +15]

This proposition relies on two important assumptions: 1)
we know how fast regret will grow (and that it grows at the
rate specified in the proposition), and 2) we can calculate re-
gret for information sets outside the abstraction. Generally,
it is not possible to precisely know the growth rate of regret.
In our experiments, we use the rate of growth in regret up
to the current iteration as an estimate of future growth. It is
possible that better heuristics can be constructed depending
on the domain. For example, using the rate of growth over



only the most recent iterations, or some weighted average of
that form, may provide a more accurate measurement. In our
experiments, we found that the speed of our algorithm can be
enhanced by making the condition in Proposition 1 slightly
stronger by increasing the left hand side by a small amount
(1% was a good value in our experiments, as we will discuss).

We can estimate regret for information sets outside the ab-

straction. Suppose we want to calculate Y-, v¢ (I, a) for
some action a leading to an IISG not in our abstraction. The
opponents must have some defined strategies following this
action. We can calculate a best response against those strate-
gies. Since we could have played that best response on each
iteration, we can calculate an upper bound on regret for a by
multiplying the counterfactual value from the best response
by the number of iterations. This approach can be applied to
any finite game, and can even be used to evaluate all actions
in some infinite games, such as those defined in Section 4.
In special cases, we can also use regret transfer to provide an
instantaneous measure of regret using the approach described
in Section 3.1.

In general, games exhibit abstraction pathology: a Nash
equilibrium computed in a finer-grained abstraction can be
further from the full-game Nash equilibruim than a Nash
equilibrium computed in a coarser abstraction [Waugh et al.,
2009b]. Since the method described in this section examines
regret in the full game when considering adding actions, it en-
sures eventual convergence to a Nash equilibrium in the full
game! Any full-game action experiencing linear growth in re-
gret would, by design, eventually be added to the abstraction.
Thus, any “weak points” of the abstraction in the full game
are quickly addressed by including them in the abstraction.

6 Removing Actions from an Abstraction

One potential problem with adding many actions to the ab-
straction is that some may later turn out to not be as important
as we thought. In that case, we may want to remove actions
from the abstraction in order to traverse the game faster. In
general one cannot remove actions because they have positive
probability in the average strategies in CFR.

Howeyver, there are situations where we can remove actions
(from the abstraction and from the average strategy).

First, in some variants of CFR, such as CFR+, the final
strategies have been shown empirically to converge [Tam-
melin, 2014], so one does not need to consider average strate-
gies. In such algorithms we can simply choose to no longer
traverse the IISG that we want to remove. Then, if our heuris-
tic later suggests that the IISG should be played, we can add
it back in and use the recovery game to “fill in” the iterations
it skipped.

Second, CFR converges (in practice and in theory) even if
we eliminate any finite number of past iterations. If we decide
to discard some number of iterations, perhaps the first portion
of a run, and an IISG is only reached in that portion, then we
can remove the IISG from the abstraction.

Third, even in vanilla CFR, there are situations where we
can effectively remove IISGs. If for every player 4, the proba-
bility on iteration ¢ of reaching history h, 77" (h), equals zero,
then regret and average strategy will not be updated for any

player. In that case, there is no need to traverse the descen-
dants of h. If the path leading to a given IISG has, for each
player, an action belonging to that player with sufficiently
negative regret, then it may make sense to “archive” the IISG
by removing it from memory and storing it on disk. If CFR
updates the regrets on that path so that at least one player has
positive probability of reaching the IISG, then we can bring
the IISG back into memory. In the experiments we use only
this third action removal method (and we actually do not use
disk but RAM).

7 Experiments

We tested our algorithm on a game we coin continuous
Leduc Hold’em (CLH), a modification of regular Leduc
Hold’em [Southey et al., 2005], a popular testbed for research
due to its small size and strategic complexity. In CLH, there
is a deck consisting of six cards. There are two suits, with
each suit having three cards: Jack, Queen, and King. There
are a total of two rounds. In the first round, each player places
an ante of 1 chip in the pot and receives a single private card.
A round of betting then takes place with a two-bet maximum,
with Player 1 going first. A player may bet or raise any real
amount between 1% of the pot and 100% of the pot. (There
are no “chip stacks” in this game.) In the second round, a sin-
gle public shared card is dealt, and another round of betting
takes place. Again, Player 1 goes first, and there is a two-bet
maximum following the same format. If one of the players
has a pair with the public card, that player wins. Otherwise,
the player with the higher card wins.

We created three fixed abstractions of CLH. All bet sizes
were viewed as fractions of the pot. All abstractions con-
tained a fold and call action. Abstraction Branch-2 included
a min bet and max bet at every information set. Branch-3
additionally contained a bet size of %, selected according to
the pseudo-harmonic mapping. Branch-5 further contained %
and %, again selected by the pseudo-harmonic mapping.

We initialized the abstraction that was used in automated
action addition to contain only the minimum and maximum
possible bet at each information set (in addition to fold and
call). We ran vanilla CFR on each abstraction. The automated
abstractions considered adding actions every 5 iterations ac-
cording to the heuristic presented in Section 5 using regret
transfer to estimate regret. As mentioned in that section, the
heuristic cannot exactly predict how regret will grow. We
therefore also tested automated abstraction refinement with
slightly stronger conditions for adding actions to the abstrac-
tion: Recovery-1.01 and Transfer both multiply the left term
in the condition by 1.01. Such changes to the heuristic, of
course, retain our theoretical guarantees. Recovery-1.0 and
Recovery-1.01 use a recovery game to add IISGs as described
in Section 3, while Transfer uses regret transfer as described
in Section 3.1.

We calculated exploitability in the full continuous game as-
suming the randomized pseudo-harmonic action translation is
used. Figure 1 shows that Recovery-1.01 outperformed all the
fixed abstractions at every point in the run. Moreover, while
the fixed abstractions leveled off in performance, the auto-
mated abstractions continued to improve throughout the run.



= = =Branch-2
= * Branch-3

Branch-5

Full Game Exploitability

\.\ . ‘e
\.\_".
01

-
S ——-

05 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Nodes Touched x 1016

10000

1000 — =
=7
"—
— -

=

Information Sets in Abstraction

0.5 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Nodes Touched x 106

Figure 1: Top: Full game exploitability. Bottom: Abstraction size.

We also tested a threshold of 1.1, which performed compara-
bly to 1.01, while a threshold of 2.0 performed worse.
Although regret transfer allows adding an IISG in O(1)
time, that method performed worse than using a recovery
game. This is due to the regret from adding the IISG being
higher, thereby requiring more discounting of prior iterations.
The “bump” in the Transfer curve in Figure 1 is due to a par-
ticularly poor initialization of an IISG, which required heavy
discounting. However, our heuristic tended to favor adding
small IISGs near the bottom of the game tree. It is possible
that in situations where larger IISGs are added, the benefit of
adding IISGs in O(1) would give regret transfer an advantage.

8 Conclusions

We introduced a method for adding actions to an abstraction
simultaneously with equilibrium finding, while maintaining
convergence guarantees. We additionally presented a method
for determining strategic locations to add actions to the ab-
straction based on the progress of the equilibrium-finding al-
gorithm, as well as a method for determining when to add
them. In experiments, the automated abstraction algorithm
outperformed all fixed abstractions at every snapshot, and
does not level off in performance.

The algorithm is game independent, and is particularly use-
ful in games with large action spaces. The results show that
it can overcome the challenges posed by an extremely large
branching factor in actions, or even an infinite one, in the
search for a Nash equilibrium.

9 Acknowledgment

This work was supported by the NSF under grant IIS-
1320620.

References

[Billings ef al., 2003] Darse Billings, Neil Burch, Aaron
Davidson, Robert Holte, Jonathan Schaeffer, Terence
Schauenberg, and Duane Szafron. Approximating game-
theoretic optimal strategies for full-scale poker. In Pro-
ceedings of the 18th International Joint Conference on Ar-

tificial Intelligence (IJCAI), 2003.

[Brown and Sandholm, 2014] Noam Brown and Tuomas
Sandholm. Regret transfer and parameter optimization. In
AAAI Conference on Artificial Intelligence (AAAI), 2014.

[Brown et al., 2015] Noam Brown, Sam Ganzfried, and Tuo-
mas Sandholm. Hierarchical abstraction, distributed equi-
librium computation, and post-processing, with applica-
tion to a champion no-limit Texas Hold’em agent. In In-
ternational Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), 2015.

[Burch et al., 2014] Neil Burch, Michael Johanson, and
Michael Bowling. Solving imperfect information games
using decomposition. In AAAI Conference on Artificial In-
telligence (AAAI), 2014.

[Ganzfried and Sandholm, 2013] Sam Ganzfried and Tuo-
mas Sandholm. Action translation in extensive-form
games with large action spaces: Axioms, paradoxes, and
the pseudo-harmonic mapping. In Proceedings of the In-

ternational Joint Conference on Artificial Intelligence (1J-
CAI), 2013.

[Ganzfried and Sandholm, 2014] Sam Ganzfried and Tuo-
mas Sandholm. Potential-aware imperfect-recall abstrac-
tion with earth mover’s distance in imperfect-information
games. In AAAI Conference on Artificial Intelligence
(AAAI), 2014.

[Gibson, 2014] Richard Gibson. Regret Minimization in
Games and the Development of Champion Multiplayer
Computer Poker-Playing Agents. PhD thesis, University
of Alberta, 2014.

[Gilpin and Sandholm, 2006] Andrew Gilpin and Tuomas
Sandholm. A competitive Texas Hold’em poker player
via automated abstraction and real-time equilibrium com-

putation. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), pages 1007-1013, 2006.

[Gilpin and Sandholm, 2007] Andrew Gilpin and Tuomas
Sandholm. Lossless abstraction of imperfect information
games. Journal of the ACM, 54(5), 2007.

[Hawkin et al., 2011] John Hawkin, Robert Holte, and Du-
ane Szafron. Automated action abstraction of imperfect
information extensive-form games. In AAAI Conference
on Artificial Intelligence (AAAI), 2011.

[Hawkin et al., 2012] John Hawkin, Robert Holte, and Du-
ane Szafron. Using sliding windows to generate action ab-
stractions in extensive-form games. In AAAI Conference
on Artificial Intelligence (AAAI), 2012.

[Jackson, 2014] Eric Griffin Jackson. A time and space effi-
cient algorithm for approximately solving large imperfect
information games. In AAAI Workshop on Computer Poker
and Imperfect Information, 2014.



[Johanson et al., 2013] Michael Johanson, Neil Burch,
Richard Valenzano, and Michael Bowling. Evaluating
state-space abstractions in extensive-form games. In

International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), 2013.

[Johanson, 2013] Michael Johanson. Measuring the size of
large no-limit poker games. Technical report, University
of Alberta, 2013.

[Kroer and Sandholm, 2014a] Christian Kroer and Tuomas
Sandholm. Extensive-form game abstraction with bounds.
In Proceedings of the ACM Conference on Economics and
Computation (EC), 2014.

[Kroer and Sandholm, 2014b] Christian Kroer and Tuomas
Sandholm. Extensive-form game imperfect-recall abstrac-
tions with bounds, 2014. arXiv.

[Lanctot et al., 2012] Marc Lanctot, Richard Gibson, Neil
Burch, Martin Zinkevich, and Michael Bowling. No-regret
learning in extensive-form games with imperfect recall. In

International Conference on Machine Learning (ICML),
2012.

[Sandholm and Singh, 2012] Tuomas Sandholm and Satin-
der Singh. Lossy stochastic game abstraction with bounds.
In Proceedings of the ACM Conference on Electronic
Commerce (EC), 2012.

[Sandholm, 2010] Tuomas Sandholm. The state of solving
large incomplete-information games, and application to
poker. Al Magazine, pages 13-32, Winter 2010. Special
issue on Algorithmic Game Theory.

[Shi and Littman, 2002] Jiefu Shi and Michael Littman. Ab-
straction methods for game theoretic poker. In CG ’00:
Revised Papers from the Second International Conference
on Computers and Games, pages 333-345, London, UK,
2002. Springer-Verlag.

[Southey et al., 2005] Finnegan Southey, Michael Bowling,
Bryce Larson, Carmelo Piccione, Neil Burch, Darse
Billings, and Chris Rayner. Bayes’ bluff: Opponent mod-
elling in poker. In Proceedings of the 21st Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI), pages
550-558, July 2005.

[Tammelin, 2014] Oskari Tammelin. Solving large imper-
fect information games using CFR+. arXiv preprint
arXiv:1407.5042, 2014.

[Waugh and Bagnell, 2015] Kevin Waugh and Drew Bag-
nell. A unified view of large-scale zero-sum equilibrium
computation. In Computer Poker and Imperfect Informa-
tion Workshop at the AAAI Conference on Artificial Intel-
ligence (AAAI), 2015.

[Waugh et al., 2009a] Kevin Waugh, Nolan Bard, and
Michael Bowling. Strategy grafting in extensive games.
In Proceedings of the Annual Conference on Neural Infor-
mation Processing Systems (NIPS), 2009.

[Waugh et al., 2009b] Kevin Waugh, David Schnizlein,
Michael Bowling, and Duane Szafron.  Abstraction

pathologies in extensive games. In International Con-
ference on Autonomous Agents and Multi-Agent Systems
(AAMAS), 20009.

[Waugh er al., 2015] Kevin Waugh, Dustin Morrill, Drew
Bagnell, and Michael Bowling. Solving games with func-
tional regret estimation. In AAAI Conference on Artificial
Intelligence (AAAI), 2015.

[Zinkevich et al., 2007] Martin Zinkevich, Michael Bowl-
ing, Michael Johanson, and Carmelo Piccione. Regret
minimization in games with incomplete information. In
Proceedings of the Annual Conference on Neural Infor-
mation Processing Systems (NIPS), 2007.



