Markets and Their Algorithmic Issues

Markets and Prices

- Consider capitalistic economy with set of goods and buyers
- How should prices of the goods be determined to ensure e.g. stability, fairness, and efficiency?
- Mathematical economics
 - General equilibrium theory
 - Arrow & Debreu (1954) existence of equilibrium in general model of economy
 - Non-algorithmic theory

Markets and Prices

- Massive computational power available for running new markets
- Need for algorithmic theory of market equilibria
- Algorithms can help understand repercussions to existing prices, production, and consumption caused by technological advances, introduction of new goods, or changes to the tax structure

Equilibrium Price

- Stability of prices demand must equal supply
- If there is only one good, equilibrium price is easy to determine: where demand and supply curves intersect
 - Arrow & Debreu (1954) existence of equilibrium prices in general model of economy
- It turns out that equilibria for several market models can be captured as optimal solutions to certain nonlinear convex programs
 - Combinatorial algorithms for solving these convex programs

A Simple Market

Simple Market

- A set of goods; B set of buyers
- Buyer i has money m_i Each good j has amount a_i
- Buyer *i* has access to subset S_i of goods
- Once the prices p₁, ..., p_n are fixed, a buyer is only interested in the cheapest goods S_i'
- Any allocation from S_i' that exhausts her money is an optimal basket of goods at these prices
- Prices are *market clearing* or *equilibrium* if each buyer can be assigned an optimal basket such that there is no surplus or deficiency of any good