
Fisher’s Linear Case



• Fisher’s Linear Model
• Existence and uniqueness of equilibrium prices
• An algorithm to compute equilibrium prices in 

polynomial time

This Lecture



• A – set of goods; B – set of buyers

• Buyer i has money e
i   

Each good j has amount b
j

• Buyer i obtains utility u
ij
 for unit amount of good j

● Total utility for a bundle: 

• Once the prices p
1
, …, p

n
 are fixed, a buyer is only 

interested in the goods that maxmize u
ij
 / p

j

• optimal basket of goods 
• Prices are market clearing or equilibrium if each 

buyer can be assigned an optimal basket such that 
there is no surplus or deficiency of any good

Fisher’s Linear Model



• By rescaling, can assume each b
j
 = 1

• u
ij
’s and e

i
’s are in general rational, but we can 

rescale to ensure they are integral.
• Mild assumption: each good has a potential buyer. 

That is, for each j, there exists i such that u
ij
 > 0

• Equilibrium allocations, it turns out, can be 
captured as optimal solution to a convex program: 
the Eisenberg-Gale convex program.

Fisher’s Linear Model



Considerations
• The program must have as constraints the packing 

constraints on the x
ij
’s

• The objective function should maximize the utilities, and
● If utilities of any buyer are scaled by a constant, should 

not change the allocation
● If a buyer is split into two buyers with the same utility, 

the sum of the optimal allocations to the new buyers 
should be an optimal allocation for the original



Considerations
• Money-weighted geometric mean satisfies these 

requirements:

• Equivalently:  



Eisenberg-Gale convex 
program



Karush-Kuhn-Tucker 
conditions

• p
j
’s are the Lagrange variables wrt the second set of 

conditions – interpret as prices
• From these conditions, one can derive that an 

optimal solution to the program must satisfy market 
clearing conditions



Karush-Kuhn-Tucker 
conditions



Karush-Kuhn-Tucker 
conditions

• But how to compute eq. prices and allocations?



Checking if Given 
Prices are 

Equilibrium Prices



• Let p = (p
1
, …, p

n
) denote a vector of prices

• Q. Is p the equilibrium price vector? If so, can we 
find equilibrium allocations for the buyers?

• At prices p, buyer i derives u
ij
 / p

j 
utility per unit 

money spent on good j.
• Define her bang-per-buck: 
• Her bang-per-buck goods are the ones she’d like to 

buy at current prices.
• Define bipartite graph G on (A,B): add edge (i,j) iff. 

good i is a bang-per-buck good of buyer j

The Equality Subgraph



The Network N(p)



The Network N(p)

• If f is a feasible flow, allocate goods to buyers as 
follows: if edge (j,i) has f(j,i) units of flow, buyer i 
buys f(j,i) / p

j 
amount of good j

• Then a maxflow computation yields the most 
amount of goods that can be sold within the budgets 
of the buyers (when each buyer buys only bang-per-
buck goods)

• Q. Is p the equilibrium price vector? If so, can we 
find equilibrium allocations for the buyers?



Two Crucial Ingredients 
of the Algorithm
• Related to primal-dual schema for approximation algorithms

• Start with very low prices, below equilibrium for each good

• Construct N(p) for current prices

• Buyers have surplus; raise prices to reduce the surplus

• When surplus is zero, algorithm terminates

• Questions
● How do we ensure equilibrium price of no good is 

exceeded?
● How do we ensure surplus money decreases fast enough?



Two Crucial Ingredients 
of the Algorithm
• m

i 
– money spent by buyer i

• Buyer i’s surplus: 
• Relax the third and fourth KKT conditions:

• Potential function: 
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Similarity to Primal-Dual

• Raise prices (dual variables) greedily until the KKT 
conditions are satisfied

• However, satisfies KKT conditions continuously, 
whereas in primal-dual schema, at least one 
complementary slackness condition is satisfied in 
each step



Tight Sets and the 
Invariant
• Let p be the current prices
• For set S of goods, p(S) is the total value of the 

goods (sum of prices of goods in S)
• For set T of buyers, m(T) is total money possessed 

by buyers in T:
• For set S of goods, define its neighborhood in N(p):

• S is a tight set iff.
● Increasing prices of goods in S further might 

result in exceeding equilibrium price of some good 
  



Tight Sets and the 
Invariant
• A systematic way to ensure equilibrium prices are 

not exceeded: 



Balanced Flows in N(p)

• Denote current network N(p) by N; assume it 
satisfies the invariant

• Given feasible flow f, let R(f) denote the residual 
graph wrt f

• Surplus of buyer i:
● residual capacity of edge (i,t) 

• Surplus vector:

• A balanced flow: flow that minimizes the l
2 
norm of 

the surplus vector
• A balanced flow must be a max flow 



Balanced Flows in N(p)



Finding a Balanced Flow

• Continuously reduce the capacities of all edges that go 
from B to t, until capacity of cut

is the same as the cut

• Let resulting network be N’ – let f’ be a max flow in N’. 
Find a maximal s,t mincut in N’, say (S,T)  



The Main Algorithm

• Initialize prices so the Invariant holds:

• Idea: Raise prices of goods desired by buyers with a lot of 
surplus money. When a subset of these goods goes tight, 
surplus of some of these buyers vanishes, leading to 
substantial progress. Property 1 provides a condition to 
keep working with N(p) despite its changes



The Main Algorithm

• Run of the algorithm is partitioned into phases. Each 
phase ends with a new set going tight

• Phase starts with computation of a balanced flow
● If balance flow algorithm terminates with Case 1, then 

by Lemma 5.2 prices are in equilibrium and algorithm 
halts

● Otherwise, let δ be the maximum surplus of buyers; and 
let I be set of buyers with this surplus; let J be the set of 
goods incident with I



The Main Algorithm



The Main Algorithm
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