
Coco-Q: Learning in Stochastic Games with Side Payments

Eric Sodomka, Elizabeth M. Hilliard, Michael L. Littman, Amy Greenwald
sodomka@cs.brown.edu, betsy@cs.brown.edu, mlittman@cs.brown.edu, amy@cs.brown.edu

Brown University, 115 Waterman Street, Providence, RI 02912-1910

Abstract

Coco (“cooperative/competitive”) values
are a solution concept for two-player normal-
form games with transferable utility, when
binding agreements and side payments be-
tween players are possible. In this paper, we
show that coco values can also be defined for
stochastic games and can be learned using a
simple variant of Q-learning that is provably
convergent. We provide a set of examples
showing how the strategies learned by the
Coco-Q algorithm relate to those learned by
existing multiagent Q-learning algorithms.

1. Introduction

The field of reinforcement learning (Sutton & Barto,
1998) is concerned with agents that improve their
behavior in sequential environments through inter-
action. One of the best known and most ver-
satile reinforcement-learning (RL) algorithms is Q-
learning (Watkins & Dayan, 1992), which is known
to converge to optimal decisions in environments that
can be characterized as Markov decision processes.

Q-learning is best suited for single-agent environ-
ments; nevertheless, it has been applied in multi-agent
environments, with varying degrees of success (Sand-
holm & Crites, 1995; Gomes & Kowalczyk, 2009).
Minimax-Q (Littman, 1994) is a version of Q-learning
for two-agent zero-sum games, which converges to op-
timal (meaning, minimax) decisions for these games.

In general-sum games, however, the learning problem
has proven much more challenging. Nash-Q (Hu &
Wellman, 2003) is an attempt to use Q-learning in
the general setting, but its update rule is inefficient
and it lacks meaningful convergence guarantees (Bowl-
ing, 2000; Littman, 2001). Correlated-Q (Greenwald &
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Hall, 2003) is an improvement over Nash-Q in that, in
exchange for access to a correlating device, its update
rule is efficient. However, there are environments for
which correlated-Q is unable to converge to stationary,
optimal decisions (Zinkevich et al., 2005).

As in the correlated-Q work, we consider what can be
achieved if agents are afforded extra power. Instead of
a correlating device, we consider the impact of binding
agreements on our ability to design learning algorithms
that converge to stationary, optimal decisions.

In Section 2, we provide the necessary background
on coco values as a solution concept for normal-
form games. In Section 3, we generalize coco values
to stochastic games, and prove that a variant of Q-
learning based on this concept converges. Section 4
introduces a set of grid games and compares and con-
trasts the solutions that result from the coco concept
to the aforementioned multi-agent learning algorithms.

2. Coco Values in Normal-Form Games

Coco values were introduced by Kalai & Kalai (2010)
as a solution to two-player normal-form games where
players have transferable utility (TU): a common cur-
rency equally valued by both players. The coco-value
solution concept takes advantage of the extra powers
players have when making binding agreements that
specify a joint action and include a side payment—a
transfer of utility from one player to the other.

Coco gets its name from the way it is calculated: by
decomposing the game into a cooperative (or team)
game and a competitive (or zero-sum) game, and then
combining the solutions to these games.

Consider a scenario where you and a short, but strong,
friend are picking bananas. Your friend cannot reach
any bananas, and you can only reach two. If you try to
climb on your friend to reach more bananas, you fail.
However, if your friend is willing to give you a boost,
you can climb and get two high bananas, as well as the
two low ones. This game is depicted in Figure 1.
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Friend

You
reach climb

don’t boost 0, 2 0, 0
boost 0, 2 0, 4

Figure 1. A banana-picking game.

If utility is not transferable, your friend has no in-
centive to help you pick bananas. But, if it is, then
offering her some bananas might encourage her to give
you a boost. How many of the four bananas you pick
should you offer her? One bite? All four? Coco values
offer a focal point—you should offer her one banana for
her efforts. The coco values of this game are (1, 3).

2.1. Operators on Values

A two-player normal-form game 〈A,A,U, U〉 is played
by a player, Ego, and another player, Alter. Here, A
is Ego’s set of actions and A is Alter’s. The values for
the game are defined by U for Ego and U for Alter.
For action a ∈ A and a ∈ A, U(a, a) is Ego’s value and
U(a, a) is Alter’s.

We now define a few operators on values. The maxmax
(or friend) operator finds the highest possible U value:

maxmax(U) = max
a∈A

max
a∈A

U(a, a).

This operation is computationally straightforward:
simply maximize over all the entries in U .

The minmax (or foe) operator finds the highest possi-
ble worst-case value for Ego:

minmax(U)

= max
π∈Π(A)

min
π∈Π(A)

∑
a∈A

∑
a∈A

π(a)π(a)U(a, a).

Here, Π(X) represents the space of probability
distributions over a discrete set X. Note that
minmax(−U) = −minmax(U). This operator is also
relatively straightforward to compute, as it can be cal-
culated in polynomial time using linear programming.

The Nash operator selects a value for Ego according
to a Nash equilibrium. Specifically,

Nash(U,U) =
∑
a∈A

∑
a∈A

π(a)π(a)U(a, a),

where π and π are probability distributions that con-
stitute some Nash equilibrium of the bimatrix game.
This operator is more challenging to compute, as
the problem of computing any Nash equilibrium is
now known to be PPAD-complete (Chen & Deng,

2006) and NP-hard for the welfare-maximizing equi-
librium (Gilboa & Zemel, 1989). Perhaps worse, the
value of the operator is not well defined, as there can
be multiple conflicting Nash equilibria.

The CE operator is analogous, but it selects its value
using a correlated equilibrium. Specifically,

CE(U,U) =
∑
a∈A

∑
a∈A

π(a, a)U(a, a),

where π is a probability distribution over joint actions
constituting a correlated equilibrium of the bimatrix
game. In this paper, we restrict our attention to the
correlated equilibrium operator that maximizes total
welfare: that is, the sum of the players’ values. Like
minmax, this operator can be computed in polynomial
time using linear programming. It need not produce
a unique value, however, as there can be multiple cor-
related equilibria with the same total welfare but a
different allotment of values for the two players.

2.2. Coco Value Operator

With this notation established, we can write the coco
value of a bimatrix game as an operator as follows:

Coco(U,U)

= maxmax((U + U)/2) + minmax((U − U)/2).

For all other operators, the players’ joint actions are
chosen from the set that yields (one of) the operator’s
values. In the case of coco, the players play a welfare-
maximizing joint action:

(a∗, a∗) ∈ argmax
(a,a)

(U(a, a) + U(a, a)).

Then, to their respective values, they add a transfers
(or side payment), which, for each player, amounts to
the difference between its coco value and its share of
the welfare-maximizing values: The side payments P ,
received by Ego, and P , received by Alter, are:

P = Coco(U,U)− U(a∗, a∗),

P = Coco(U,U)− U(a∗, a∗).

A positive P indicates a payee, and a negative P indi-
cates a payer. Payments balance because P = −P .

To solidify how exactly coco values are computed,
consider the following example (Figures 2 and 3).

The original game f (Figure 2) decomposes into a team
game and zero-sum game (Figure 3). We say “decom-
poses” because the sums of the team and zero-sum
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Ego

Alter
a

a1 1, 0
a2 0, 4

Ego

Alter
a

a1 0, 0
a2 1, 5

Figure 2. Left: Game f : (U,U), a general-sum game.
Right: Game f ′: another general-sum game.

Ego

Alter
a

a1 0.5
a2 2

Ego

Alter
a

a1 0.5
a2 −2

Figure 3. Left: (U+U)/2, a team game. Right: (U−U)/2,
a zero-sum game. Jointly, a decomposition of game f .

game values match those for Ego in the original game
and the differences match those for Alter. The coco
values are then the sum of the solutions of these two
games, namely (2, 2)+(.5,−.5) = (2.5, 1.5). To achieve
these values, the agents play (a2, a) and receive values
(0, 4), and then Alter pays Ego 2.5. Ego wields a great
deal of power in this game, and only agrees to play a2

because of the promise of substantial side payments.

Note that it would be rational, and indeed a Nash equi-
librium, for Ego to accept a smaller value, say .5, or for
Alter to offer a larger side payment, say 3.5. Coco val-
ues offer a “recommended focal point” in games where
side payments and binding agreements support many
Nash equilibria (Kalai & Kalai, 2012).

Because coco values are based on side payments, they
also allow players to threaten each other. For example,
if Ego’s values were reversed for a1 and a2, making it
rational for Ego to play a2, the coco values would
be (2.5, 2.5). Alter would still need to pay Ego to
safeguard against Ego’s incredible threat of playing a1.

2.3. Coco Value Properties

Though relatively simple, the coco operator has some
remarkable properties. First, since it is a combination
of the maxmax and minmax operators, both of which
can be computed efficiently, coco too can be com-
puted efficiently. Further, since each of their values is
unique, so too is coco’s.

Next, observe that the sum of the players’ coco values
is the maximum joint value possible:

Coco(U,U) + Coco(U,U)

= maxmax((U + U)/2) + minmax((U − U)/2) +

maxmax((U + U)/2) + minmax((U − U)/2)

= maxmax(U + U). (1)

On the other hand, the difference between the two
coco values is the minmax of the difference:

Coco(U,U)− Coco(U,U)

= (maxmax((U + U)/2) + minmax((U − U)/2))−
(maxmax((U + U)/2) + minmax((U − U)/2))

= minmax(U − U). (2)

The coco value is also known (Kalai & Kalai, 2012)
to be the only value that satisfies a set of five desirable
axioms, which includes Pareto efficiency.

Next, we show how the coco operator can be applied
to stochastic games.

3. Coco Values in Stochastic Games

A two-player stochastic game (Shapley, 1953)
〈S,A,A, T,R,R, γ〉 is defined by a state space S, ac-
tion spaces A and A for Ego and Alter, a transition
function T mapping states and joint actions to proba-
bility distributions over states, reward functions R and
R mapping states and joint actions to rewards for the
two players, and a discount factor γ.

If the number of actions available to Alter is one
(|A| = 1), the environment is a Markov decision pro-
cess (MDP) (Puterman, 1994) and Ego’s objective is
to maximize its expected discounted future reward.

3.1. Generalized Q-learning in Games

Q-learning (Watkins & Dayan, 1992) learns behavior
from experience while acting in an MDP. We define a
generalized Q-learning algorithm for 2-player games.
Each player keeps an estimate (Q values) of the ex-
pected future discounted reward starting in state s
and taking joint action (a, a). Ego’s estimate is writ-
ten Qs(a, a) or Qs, and Alter’s, Qs(a, a) or Qs. This
estimate is updated based on the agent’s experience in
its environment.

Let 〈s, a, a, r, r, s′〉 be an experience tuple that reflects
that the players observe a transition from state s to
state s′ after Ego takes action a and Alter a. The
players receive values r and r, respectively. General-
ized Q-learning updates Q and Q as follows:

Q′s = Qs + α(r + γ⊗(Qs′ , Qs′)−Qs),
Q
′
s = Qs + α(r + γ⊗(Qs′ , Qs′)−Qs).

Q′ and Q
′

represent the updated versions of Q and Q,
α is a learning rate, and γ a discount factor.

In general, it is desirable for the Q values to converge
to the solution of the following system of equations,
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which we call the solution of the game. Given operator
⊗, for all s, a, and a,

Qs(a, a) = Rs(a, a) + γ
∑
s′

T (s, a, a, s′)⊗(Qs′ , Qs′),

(3)
and likewise for Q.

Depending on the choice of ⊗, different solutions,
and correspondingly, different learning algorithms, re-
sult. In an MDP, ⊗ = max recovers the original
Q-learning algorithm, which converges to the corre-
sponding solution of the game. In a zero-sum game
(R = −R), ⊗ = minmax, resulting in an algorithm
called minimax-Q or foe-Q. In a team game (R = R),
⊗ = maxmax, resulting in an algorithm called friend-
Q (Littman, 2001). Each of friend-Q and foe-Q con-
verge to the corresponding solution of the game.

For general-sum games, the situation is more complex.
Nash-Q uses ⊗ = Nash and CE-Q uses ⊗ = CE.
While both definitions are plausible, the Q function
alone does not contain enough information to identify
a solution of the game (Zinkevich et al., 2005).

Existing proofs of convergence of variants of Q-
learning make use of the following result. If ⊗ is a
non-expansion, then Equation 3 has a unique solution
and Equation 3 converges to it (Littman & Szepesvári,
1996). For ⊗ to be a non-expansion, we need the fol-
lowing to be true for all functions f and f ′,

| ⊗ f −⊗ f ′| ≤ maxmax |f − f ′|.

That is, the summaries of two functions should be
no further apart than the functions themselves. Op-
erators max, maxmax, and minmax are all non-
expansions, and convergence is guaranteed. Operators
Nash and CE are not non-expansions and convergence
is not guaranteed.

The Coco operator is not a non-expansion. To see
why, compare game f in Figure 2(Left) to game f ′

in Figure 2(Right). For this pair of games, we have
maxmax |f−f ′| = 1; the values between corresponding
values in the two games differ by at most one. In
Section 2.2, we show that Coco f = (2.5, 1.5). By the
same process, Coco f ′ = (3, 3). The largest difference
between coco values is 1.5, so the Coco operator is
not a non-expansion.

Although, the Coco operator is not a non-expansion,
Coco-Q, the Q-learning algorithm that arises from
defining ⊗ = Coco, still converges! We prove this re-
sult next. Then, in the remainder of the paper, we
describe experimental results that demonstrate that
Coco-Q learns sound policies.

3.2. Convergence of Coco-Q

Let Q and Q be a pair of initial functions.1 We will
maintain two auxiliary functions, Z (zero-sum) and C
(common interest/team), defined as Zs = (Qs−Qs)/2
and Cs = (Qs +Qs)/2.

Let 〈s, a, a, r, r, s′〉 be an experience tuple, which we
will use to update the Q values as follows:

Q′s = Qs + αa,a(r + γ Coco(Qs′ , Qs′)−Qs);

Q
′
s = Qs + αa,a(r + γ Coco(Qs′ , Qs′)−Qs);

Z ′s = Zs + αa,a((r − r)/2 + γminmax(Zs′)− Zs);

C ′s = Cs + αa,a((r + r)/2 + γmaxmax(Cs′)− Cs).

We claim that the following property holds. If Zs =
(Qs −Qs)/2 and Cs = (Qs +Qs)/2, then Z ′s = (Q′s −
Q
′
s)/2 and C ′s = (Q′s + Q

′
s)/2. That is, the updates

maintain this relationship between Q, Q, Z, and C.
The relationship for Z ′s holds because

(Q′s −Q
′
s)/2

= (Qs + αa,a(r + γ Coco(Qs′ , Qs′)−Qs))/2−
(Qs + αa,a(r + γ Coco(Qs′ , Qs′)−Qs))/2

= (Qs −Qs)/2 + αa,a((r − r)/2 +

γminmax((Qs′ −Qs′)/2)− (Qs −Qs)/2)

= Zs + αa,a((r − r)/2 + γminmax(Zs′)− Zs)
= Z ′s.

(The second equality follows from Equation 2.) The
relationship for C ′ holds by analogous reasoning.

Given this relationship, it is not necessary to explicitly
maintain all four functions. We could keep track of Q
and Q and, at any time, produce Zs = (Qs − Qs)/2
and Cs = (Qs + Qs)/2. Or, we could keep track of Z
and C and, at any time, produce and Qs = Cs+Zs and
Qs = Cs−Zs. Although the natural implementation is
the former, the latter is the one for which convergence
is evident. In particular, note that the Z update is pre-
cisely minimax-Q on the reward function (Rs−Rs)/2,
which converges. Similarly, the C update is precisely
friend-Q on the reward function (Rs + Rs)/2, which
also converges. Since the sum and difference of con-
vergent sequences converge, Coco-Q converges.

In fact, viewed from another perspective, it is not at all
surprising that Coco-Q converges. A stochastic game
is just a succinct representation of a normal-form game
in which the two players select policies. As such, we
have every reason to expect that the coco operator

1Note that Q can come from Alter’s estimates, or Ego
can maintain its own independent copy.
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would apply to stochastic games and retain its formal
properties. Indeed, the coco values of a general-sum
stochastic game decompose into the sum and difference
of the solutions of the corresponding team and zero-
sum stochastic games, analogously to the normal-form
case discussed by Kalai & Kalai (2010).

4. Coco Values in Grid Games

As shown above, Coco-Q converges to the set of values
defined by Equation 3. We now introduce a set of sam-
ple stochastic games and analyze their corresponding
values. The results we present use value iteration in-
stead of Q-learning to derive the Q functions, as the
former converges faster and with less noise, making it a
useful tool for understanding the behavior of Coco-Q.

4.1. Grid Game Specification

A grid game is played on a grid of m × n squares.
Each agent has associated with it a starting square on
the grid and a (possibly empty) set of goal squares,
where it receives rewards. Agents can observe their
own and others’ positions in the grid, as well as walls
and semi-walls, which impede movement to varying
degrees. At each time step, all agents simultaneously
choose an action from the set {up, down, left, right,
stick}. Every action except stick incurs a step cost,
even if the agent is unable to move as intended.

If an agent’s selected move is unimpeded, the agent
moves in the direction specified by that move. If an
agent tries to move through a wall, or to a square that
is already occupied by an agent who sticks, the agent
remains in its current square. If an agent tries to move
through a semi-wall, it will do so with probability p;
otherwise, it remains in its current square. If both
agents try to move into the same square, including
goals, at the same time, one of the agents is chosen—
uniformly at random—to do so; the other remains in
its current square.

The game ends once either agent reaches one of its
goal squares. If multiple agents reach their respec-
tive goal squares simultaneously, they all receive their
respective rewards. In our experiments, unless other-
wise specified, we set goal rewards = 100, step costs =
−1, and p = 0.5. Initially, we set the discount factor
γ = 1, for ease of interpretation of the values; later,
we set γ = 0.95 to illustrate what can happen when
agents prefer to reach their goal sooner than later.

A policy π is tuple of mappings, one per player, from
states to actions. A trajectory for a joint policy π is
a possible sequence of states and actions that could
arise when agents play π. We denote by V πi player

i’s expected discounted reward at its start state under
joint policy π, dropping the superscript π when it is
clear from context.

Figure 4(a) shows a sample grid game with agent tra-
jectories overlaid. In this and all subsequent games,
agents are depicted on the grid by A and B. Agent
goals are shown as squares with diagonal lines pass-
ing through them (from the lower-left to upper-right
corner for A’s, and from the upper-left to lower-right
corner for B’s). If both agents have a goal in the same
square, both sets of diagonal lines are shown. Trajec-
tories are shown as a sequence of arrows pointing from
the agent’s current square to its next square. Any time
an agent moves to a new square, the corresponding ar-
row of the trajectory is labeled with the time step. A
stick action is shown as a circle. If the agent attempts
to move to a square but cannot because of an obstacle,
an arrow is shown in the direction the agent attempted
to move, but the arrow stops at the square at which
the agent was stopped. Further, if side payments oc-
cur, underneath the grid we show the payment that
was made to A at each step, so that positive values
mean A received a positive payment. (B’s side pay-
ment is the negative of this number.) Concretely, in
the game shown in Figure 4(a), each agent has a sin-
gle goal two squares above its starting square. If both
agents play up twice, then both agents will reach their
goals at the same time, each receiving a goal reward
of 100 minus a step cost of 2 (assuming γ = 1).

4.2. Example Games

We now present some specific grid games designed to
illustrate properties of coco values. We compare the
coco policies to those of Correlated-VI, the result of
solving Equation 3 with ⊗ = CE. Specifically, we
use the utilitarian variant of CE (Greenwald & Hall,
2003), which, in the case of multiple correlated equi-
libria, chooses an equilibrium that maximizes the sum
of the agents’ rewards.

Coordination In Coordination (Figure 4(b)), A and
B have to cross paths without colliding to reach their
goals, which are diagonally across the grid from their
starting square. While Q-learning has been shown
to have poor performance in this game, Nash-Q and
CE-Q, which don’t use transfers, have been shown
to coordinate to reach the efficient outcome (Hu &
Wellman, 2003; Greenwald & Hall, 2003), in which
VA = VB = 96 (assuming γ = 1).

Coco also takes actions that bring agents directly to
their goals (and, hence, yield rewards of 96 for both),
making interesting side payments along the way. In
the particular trajectory shown in Figure 4(b), in step
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A
B

(1
)

(1
)

(2
)

(2
)

(a) An example trajec-
tory for an example
game

A
B

(1
)

(1
)

(2
)

(2)

(3)

(3)

(4)

(4
)

Step PA
1 0.00
2 −0.50
3 0.50
4 0.00

(b) coco on Coordina-
tion. γ = 1.

Figure 4. A possible coco trajectory in the Coordination
grid game. This trajectory corresponds to one of many
possible coco policies, all of which have the same values.

1, both agents move up with no transfers, but in step
2, A pays B a small amount for B to move left while
A moves up onto B’s goal. B is being (temporarily)
compensated for assuming a vulnerable position: In
the resulting state, A can guarantee B never reaches
its goal, while B cannot do the same to A. Once A
reaches a square where it is no longer a threat to B, it
gets its side payments back from B.

Prisoner Figure 5 depicts Prisoner, a grid game ver-
sion of the well-known normal-form game, the prison-
ers’ dilemma. Each agent has its own goal at one end
of the grid, and there is a shared goal in the center.

This grid game resembles the prisoners’ dilemma be-
cause moving to the shared goal (“defect”) is a dom-
inant strategy for each agent: if A is moving to the
shared goal, B prefers to also move to the shared goal,
and possibly win the collision tiebreaker, since other-
wise the game ends before B can reach either goal.
If A moves toward its own goal (“cooperate”), B still
prefers to move to the shared goal since that way it
immediately reaches a goal without incurring any ad-
ditional step costs or wasting any time. However, the
agents each receive higher expected value when they
both cooperate than when they both defect.

Figure 5(a) depicts the Correlated-VI policy. Both
agents play their dominant strategy, and each gets
into the shared goal with probability 0.5, so that
VA = VB = 49 = (100− 2)(0.5) (assuming γ = 1).

Figure 5(b) shows the unique coco policy in this
game.2 Under this policy, B sticks in place for two

2Modulo exchanging roles.

A
B

(1)

(a) Correlated-VI on Prisoner

A
B

(1)(2)(3)

(3)

Step PA
1 50.00
2 −49.00
3 0.00

(b) coco on Prisoner. γ = 1.

Figure 5. A Correlated-VI trajectory and the unique coco
trajectory in the Prisoner grid game.

steps while A proceeds to its goal, and then both
agents walk into their goals simultaneously. The sum
of the agents’ values is 196 instead of 98. Note that this
solution is analogous to what is computed by FolkE-
gal (Munoz de Cote & Littman, 2008).

The transfer payments made by the coco strategy are
of particular interest. First, B pays A to take a step
to the left while B sticks. B has to pay A so that A
will move into a more vulnerable position. A is now
two steps from a goal, while B is only one step away.
Second, A pays B 49 to stick instead of moving into
the shared goal, giving A time to move next to its own
goal. Finally, when A and B are both able to step into
their respective goals, no side payments are made. The
final values are 98 for A and 98 for B.

It is noteworthy that the players’ final values are equal
in this game. Even though the two players adopt dif-
ferent roles—one approaching the near goal and one
moving to a distant goal—their expected discounted
rewards end up the same. Values are not equal for
the two players under FolkEgal or Correlated-VI. To
achieve equal values under the policies they produce,
it would be necessary to average across policies, with
the two players switching roles. Although space does
not permit a full proof here, this desirable property is
general to coco values—players in symmetric games
have symmetric values.

Turkey In Turkey3 (Figure 6), A and B have their
own goals, in the top left and top right corners, respec-
tively, and a shared goal near the center of the grid.
The thick dashed lines on the grid represent semi-walls.

By way of comparison, Figure 6(a) shows a possible
Correlated-VI trajectory for one possible Correlated-VI
policy (with values VA = 43.20 and VB = 87.40). In

3a variant of Chicken
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A
B(1)

(2
)

(3
)

(a) Correlated-VI on
Turkey. VA = 43.2,
while VB = 87.4.

A
B

(1
)

(1)

(2
)

(2
)

(3
)

(3
)

Step PA
1 22.10
2 0.00
3 0.00

(b) coco on Turkey,
trajectory 1

A
B(1)

(2
)

(2
)

(3
)

(4
)

(4
)

Step PA
1 22.10
2 0.50
3 −49.00
4 0.00

(c) coco on Turkey, tra-
jectory 2

A
B(1)

(2
)

(3)

(3)

(4
)

(4
)

(5
)

(5
)

Step PA
1 22.10
2 0.50
3 −49.50
4 0.00
5 0.00

(d) coco on Turkey,
trajectory 3

Figure 6. The three possible trajectories for coco in grid
game Turkey. γ = 0.95.

this trajectory, B takes the shortcut around the semi-
wall, while A tries to pass through the other, but fails.
After one failed attempt, A sticks, since B will reach
the shared goal and the game will end before A can
reach its own goal. Had A been successful at passing
through the semi-wall, it would have gone directly to
its goal and reached it at the same time as B.

Interestingly, there are exactly three possible trajecto-
ries for coco. Figure 6(b) shows the first such trajec-
tory (which occurs with probability p). This trajectory
is the same as what happens in Correlated-VI when A
succeeds at passing through the semi-wall: both play-
ers march to their goals. The difference between coco
and Correlated-VI is that, in coco, a transfer payment

is made from B to A to compensate A for the riskier
route. When A happens to make it through the semi-
wall, no further transfer payments are made, and A
receives more total value than is possible in a game
without transfer payments (at B’s expense).

Figure 6(c) shows what happens when A fails to make
it through the semi-wall after the first attempt: unlike
Correlated-VI, which sticks, under coco, A makes an-
other attempt to pass through the semi-wall. In this
trajectory, it succeeds the second time (this happens
with probability p, so this trajectory occurs with prob-
ability p2), and then makes a transfer to B so that B
waits one additional turn for A to catch up, at which
point they walk into their goals simultaneously with-
out further side payments. Note that B actually pays
a small amount to A to make that second attempt at
passing through the semi-wall. It does so because the
alternative of A moving right on step two would neces-
sitate that B pursue its own goal instead of the shared
goal, which would incur additional step costs for B.

In the third and final possible trajectory for coco
(Figure 6(d)), A does not succeed at getting through
the wall on the first or second attempt. At that point,
B decides to pursue its own goal, and let A pursue the
shared goal, rather than risk another block from the
semi-wall. For B’s added step cost, A pays B a slightly
higher amount than it did when it passed through the
semi-wall successfully on the second step. This trajec-
tory occurs with probability 1− p− p2.

Table 1 derives VA and VB for Turkey, by calculating
an expected value of VA and VB across trajectories.
The column labeled Probability gives the probability of
each trajectory, and the columns labeled A and B, re-
spectively, give the values of VA and VB for each player
for each trajectory. Once again, we see a symmetric
game, even in the face of asymmetric roles, resulting
in symmetric values.

Trajectory Probability A B
(b) 0.5 109.5 65.3
(c) 0.25 60.4 104.6
(d) 0.25 54.8 99.0

Expected Value — 83.55 83.55

Table 1. Details of the VA and VB computation in Turkey
when agents play coco.

Friend or Foe Friend or Foe (Figure 7) is an asym-
metric game in which not all goals have equal value.
Specifically, A’s individual goal on the extreme left side
of the grid has a much higher reward than the shared
goal near the center (a reward of 1,000 versus 100).
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A
B

(1)(2)

(2)

(3)

(3)

Step PA
1 −355.73
2 0.00
3 0.00

(a) coco on Friend or Foe

Figure 7. The coco trajectory for the unique determin-
istic policy in the Friend or Foe grid game. γ = 0.95.

A
B

(1)

(1)

(2)

(2)

Step PA
1 7.43
2 450.97

(a) coco on Incredible

Figure 8. The coco trajectory for the unique determin-
istic policy in the Incredible grid game. γ = 0.95.

Friend or Foe is distinct from the other games in that,
without considering transfer payments, the game has
no deterministic equilibrium. In the first round, if A
moves left, B’s best response is to also move left, since
B is then guaranteed to reach its goal as quickly as
possible. But, if B moves left, A has no hope of get-
ting its large-valued goal, so it would be better off
immediately moving to the shared goal on the right.
If A immediately moves right, B might as well stick
and not waste step costs. But, if B sticks on the first
round, A would be better off moving left in pursuit of
its large-valued goal.

Correlated-VI does not converge to a stationary policy
in this instance, but rather it “converges” to a pol-
icy cycle of length two (Zinkevich et al., 2005). The
agents’ joint action at the start state oscillates.

Coco, in contrast, converges to a stationary policy.
Under the coco policy (see Figure 7), A pays B a
share of the large goal value to stick as A moves left.
Both agents are then two steps from a goal, and they
move to them without making further side payments.

Incredible One potential issue with the coco solu-
tion concept in normal-form games discussed by Kalai
& Kalai (2012) is that players may not be incentivized
to abide by a coco policy. Figure 8 depicts the game
Incredible, which illustrates this issue. In this game,
B receives a larger value for reaching its goal than A
receives for reaching its goal (a reward of 1,000 versus
100), but B’s movement towards its goal is impeded
by A. If A sticks, B is stuck with at most value 0.

The coco policy prescribes that both players move
left into their goals, but that B pay A to move left.
However, even if B made no side payment, A should
still move left towards its goal. B is essentially paying
A over the incredible threat that A will stick.

4.3. Summary of Experiments

Figure 9 shows each player’s values and the total values
for the Nash-VI, Correlated-VI, and coco policies for all
of the grid games we discussed. As coco values are
welfare maximizing, no learning algorithm can achieve
higher total values.

Average Payoff

COCO

CORRELATED−VI

NASH−VI

50 100 150

turkey

500 600 700 800 9001000

friend−or−foe

200 400 600 800 1000

incredible

COCO

CORRELATED−VI

NASH−VI

100 120 140 160 180

example

80 100 120 140 160

coordination

50 100 150

prisoner

Player A Player B Total

Figure 9. Expected values for A, B, and their combined
value when playing (stationary) Nash-VI, Correlated-VI, or
coco policies, in the games described in this paper.

Our experiments illustrate both the intelligent trans-
fers made by coco agents, and the interesting proper-
ties that arise from playing coco strategies. In Pris-
oner and Turkey, we illustrate that coco agents ac-
crue symmetric values in symmetric games. In Friend
or Foe, we illustrate that, unlike coco, Nash-VI and
Correlated-VI are not guaranteed to converge. In In-
credible, we illustrate that the coco policy is not al-
ways individually rational, in the sense that an agent
can achieve a higher value by not abiding by it.

5. Conclusions and Future Work

We introduced a new algorithm, Coco-Q, that is con-
vergent and produces interesting solutions to challeng-
ing stochastic games when utility is transferable and
binding agreements are possible.

Coco-Q, like coco values in normal-form games, is not
defined for games with three or more players. It is
an open problem to generalize to the ideas discussed
herein to a wider class of games.

It remains to be seen whether it is reasonable to ex-
pect agents (including people) to be rational about side
payments in stochastic settings, but the strategies that
Coco-Q exhibits appear sound.
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