Harsanyi-Shapley Values – Stochastic Games (n players)

Stochastic Games

Definition 6.2.1 (Stochastic game) A stochastic game (also known as a Markov game) is a tuple (Q, N, A, P, r), where:

- Q is a finite set of games;
- N is a finite set of n players;
- $A = A_1 \times \cdots \times A_n$, where A_i is a finite set of actions available to player *i*;
- $P: Q \times A \times Q \mapsto [0,1]$ is the transition probability function; $P(q, a, \hat{q})$ is the probability of transitioning from state q to state \hat{q} after action profile a; and
- $R = r_1, \ldots, r_n$, where $r_i : Q \times A \mapsto \mathbb{R}$ is a real-valued payoff function for player *i*.

How to generalize the HS definition to stochastic games (with discounted payoff?)

Recall: For two players

 $\langle s, a, \overline{a}, r, \overline{r}, s' \rangle$

$$Q'_{s} = Q_{s} + \alpha_{a,\overline{a}}(r + \gamma \operatorname{Coco}(Q_{s'}, \overline{Q}_{s'}) - Q_{s});$$
$$\overline{Q}'_{s} = \overline{Q}_{s} + \alpha_{a,\overline{a}}(\overline{r} + \gamma \operatorname{Coco}(\overline{Q}_{s'}, Q_{s'}) - \overline{Q}_{s});$$

Extend to n players: HS*

First, we define an *n*-player, normal-form game at each state $x \in X$. For joint action a of the players, the game assigns the expected utility for each player according to the reward from the transition and the current value of the resulting state. Formally, let $\mathbf{V} = (V_1, \ldots, V_n) : X \to \mathbb{R}^n$. Define the utility for player *i* for joint action a: $U_i(x, \mathbf{a}, \mathbf{V}) = \sum_{y \in X} P(x, \mathbf{a}, y) [R_i(x, \mathbf{a}, y) + \gamma V_i(y)]$, and finally define $G_x(\mathbf{V}) = (U_1(x, \cdot, \mathbf{V}), \ldots, U_n(x, \cdot, \mathbf{V})).$

Definition 3.3 (Operator T). Let \mathcal{B} be the space of functions from X to \mathbb{R}^n . Define operator $T : \mathcal{B} \to \mathcal{B}$ by

 $[T(\mathbf{V})](x) = \mathrm{HS}\left(G_x(\mathbf{V})\right).$

Definition 3.4 (HS* values for stochastic game). The HS* value V_{HS*} is a solution of the following equations.

$$\mathbf{V}(x) = [T(\mathbf{V})](x), \ \forall x \in X.$$
(4)

Alternative approach

- Define two-player zero-sum stochastic game for each coalition *I* (by summing utilities of players in coalition and subtracting complement)
- Define operator $T_{l}(V)$:

 $[T_I(V)](x) = \operatorname{maxmin}_I(H_x(V)).$

• Since maxmin is a contraction, I_1 has a unique fixed point: V_1^*

Let $i \in N$. At state $x \in X$, define

$$V_{\text{HS},i}(x) = \frac{1}{n} \sum_{I \subseteq N: i \in I} \binom{n-1}{|I-1|}^{-1} V_I^*(x), \qquad (3)$$

A M

and $\mathbf{V}_{\mathrm{HS}} = (V_{\mathrm{HS},i})_{i \in N}$.

Are the two definitions equal?

Proposition 3.6. If \mathcal{G} is a 2-player, general-sum stochastic game, $\mathbf{V}_{HS} = \mathbf{V}_{HS*}$. In general, $\mathbf{V}_{HS} \neq \mathbf{V}_{HS*}$.

Proof. Let \mathcal{G} be a 2-player stochastic game. Let $\mathbf{V} = (V_1, V_2) : X \to \mathbb{R}^2$ be a function. Define $W_1(x) = V_1(x) - V_2(x)$. Next, apply T to \mathbf{V} to get $\widehat{\mathbf{V}} = T(\mathbf{V})$. Now, let $\widehat{W}_1(x) = \widehat{V}_1(x) - \widehat{V}_2(x)$. Then

$$\begin{split} \widehat{W}_{1}(x) &= \widehat{V}_{1}(x) - \widehat{V}_{2}(x) \\ &= \frac{1}{2} [(\max \min_{1}(G_{x,1}(\mathbf{V})) + \max \max_{1}(G_{x,1,2}(\mathbf{V}))) \\ &- (\max \min_{2}(G_{x,2}(\mathbf{V})) + \max \max_{2}(G_{x,1,2}(\mathbf{V}))) \\ &= \max \min_{1}(G_{x,1}(\mathbf{V})) \\ &= T_{1}(V_{1} - V_{2})(x) = T_{1}(W_{1})(x), \end{split}$$

Are the two definitions equal?

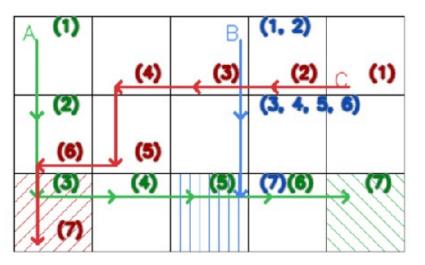
Proposition 3.6. If \mathcal{G} is a 2-player, general-sum stochastic game, $\mathbf{V}_{HS} = \mathbf{V}_{HS*}$. In general, $\mathbf{V}_{HS} \neq \mathbf{V}_{HS*}$.

where T_1 is the operator defined in Section 3.1. Therefore, as T is applied repeatedly, W_1 converges to V_1^* as defined in Section 3.1.

Similarly, if $W_2 = V_2 - V_1$; and $W_{1,2} = V_1 + V_2$, we have that $W_2 \rightarrow V_2^*$ and $W_{1,2} \rightarrow V_{1,2}^*$ as T is iteratively applied. Therefore, $V_1 = \frac{1}{2}(W_{1,2} + W_1)$ and $V_2 = \frac{1}{2}(W_{1,2} + W_2)$ both converge, precisely to $(V_{\text{HS},1}, V_{\text{HS},2}) = \mathbf{V}_{\text{HS}}$, which completes the proof.

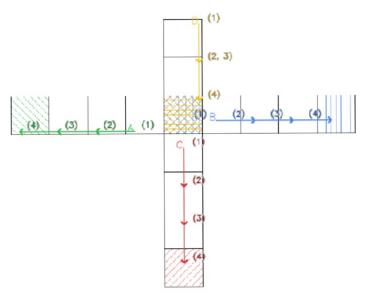
Examples that show $V_{HS} \neq V_{HS*}$ when n > 2 are provided in Section 4.

Example



State	HS	HS*
1	(-0.1, -0.2, 0.3)	(-7.6, 15.2, -7.6)
2	(0.2, -0.3, 0.1)	(-5.0, -7.9, 12.9)
3	(-16.3, 32.1, -15.8)	(-30.4, 52.2, -21.8)
4	(-16.2, 32.7, -16.6)	(-13.7, 54.0, -40.3)
5	(0.5, -0.4, -0.0)	(12.4, -25.1, 12.7)
6	(0.0, -0.0, -0.0)	(0.0, 0.0, 0.0)
V	(62.0, 161.6, 62.0)	(49.8, 185.9, 49.8)
SP	(-32.0, 64.0, -32.0)	(-44.2, 88.3, -44.2)

Example



State	HS
1	(116.3, 116.3, 116.3, -349.0)
2	(-332.8, -332.8, -332.8, 998.4)
3	(0.0, 0.0, 0.0, 0.0)
V	(780.6, 780.6, 780.6, 747.2)
SP	(-216.4, -216.4, -216.4, 649.3)
State	110*
State	HS*
1	HS* (236.8, 236.8, 236.8, -710.5)
1	(236.8, 236.8, 236.8, -710.5)
1 2	(236.8, 236.8, 236.8, -710.5) (-332.8, -332.8, -332.8, 998.4)
1 2 3	(236.8, 236.8, 236.8, -710.5) (-332.8, -332.8, -332.8, 998.4) (0.0, 0.0, 0.0, 0.0)

