Perfect-Information,
Extensive-Form
Games



Extensive Form Game

* Informally speaking, a tree, where each
node represents the choice of one of the
players. So, turn-based game, with a
concept of order of actions

* Leaves represent final outcomes over
which each player has a utility function
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Definition 5.1.1 (Perfect-information game) A (finite) perfect-information game
(in extensive form) is a tuple G = (N, A, H, Z, x, p, 0, u), where:

e N is a set of n players;
A is a (single) set of actions;
H is a set of nonterminal choice nodes;

Z is a set of terminal nodes, disjoint from H ;

x : H +— 24 is the action function, which assigns to each choice node a set of

possible actions;

e p: H — N is the player function, which assigns to each nonterminal node a
player i € N who chooses an action at that node;

e 0: HxAw HULZ is the successor function, which maps a choice node and
an action to a new choice node or terminal node such that for all h,,h, € H
and ai,09 € A, éfO'(hl, (I]_) = (T(hzj Gg) then hl — h-z and a; = oy and

e u = (Uy,...,u,), where u; : Z +— R is a real-valued utility function for
player i on the terminal nodes Z.




(0,0) (1,1) (0,0)

Figure 5.1: The Sharing game.




Strategies and
Equilibria in Extensive-
Form Games



Strategies

* A pure strategy is complete specification of
choice of made of each player at every
node

Definition 5.1.2 (Pure strategies) Ler G = (N, A, H, Z, x, p,0,u) be a perfect-
information extensive-form game. Then the pure strategies of player 1 consist of
the Cartesian product | [, p(h)=i x(h).
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(2,10) (1,0)

Figure 5.2: A perfect-information game in extensive form.

S1 = {(A?G)} (Aﬂ H)a (BvG)v (B,H)}
Sy = {(C~ E)u (Oa F)ﬂ (D,E), (DF)}
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Figure 5.3: The game from Figure 5.2 in normal form.

* Every perfect-information, EF game has
normal-form representation. But note
redundancy
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* However, not every normal-form game has
a extensive-form representation

* Consider Prisoner’s Dilemma

C D

—i.—1

D,~4 | —%—3

Figure 3.3: The TCP user’s (aka the Prisoner’s) Dilemma.
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Theorem 5.1.3 Every (finite) perfect-information game in extensive form has a
pure-strategy Nash equilibrium.




Subgame-Perfect
Equilibria



Example Game

(2,10) (1,0)

Figure 5.2: A perfect-information game in extensive form. ATM




Pure-Strategy Nash
Equilibria

(C,E) ((CF) (D,E) (D,F)

(A.G) | 3.8 8.3 8.3

(A,H) | 3.8 8. 3 8.3

(B, G) 5,5 , 5.5

(B, H) 1.0 5.5 1.0

Figure 5.4: Equilibria of the game from Figure 5.2.
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(2,10) (1,0)

(2,10) (1,0)

Figure 5.5: Two out of the three equilibria of the game from Figure 5.2:
{(A,G),(C,F)} and {(B, H),(C, E)}. Bold edges indicate players’ choices

at each node.




Pure-Strategy Nash
Equilibria

Definition 5.1.4 (Subgame) Given a perfect-information extensive-form game G,
the subgame of GG rooted at node h is the restriction of G to the descendants of h.

The set of subgames of G consists of all of subgames of G rooted at some node in
G.

Definition 5.1.5 (Subgame-perfect equilibrium) 7he subgame-perfect equilibria
(SPE) of a game G are all strategy profiles s such that for any subgame G’ of G,
the restriction of s to G' is a Nash equilibrium of G'.
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Computing equilibria:
backward induction



How to compute SPE?

(2,10) (1,0)

Figure 5.2: A perfect-information game in extensive form. ATM




Backward Induction

function BACKWARDINDUCTION (node h) returns u(h)
if h € Z then
I_ return u(h) // h is a terminal node
best_util «— —o0
forall a € y(h) do
util_at_child «<—BACKWARDINDUCTION(o (h,a))
if util_at_child,,) > best_util 1, then
| best_util — util_at_child

return best_util

Figure 5.6: Procedure for finding the value of a sample (subgame-perfect) Nash
equilibrium of a perfect-information extensive-form game.
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Backward Induction

* In principle, a sample SPE is effectively
computable

* |n practice, game tree not enumerated In
advance

* Extensive form representation of chess
has around 10*° nodes
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Alpha-Beta Pruning

° In 2-player, zero-sum game, we can prune
away subtrees without examining the entire
subtree

* At node h, a = value of previously
encountered node that Player 1 would most
prefer instead of h

* At node h, B = value of previously
encountered node that Player 2 would most

prefer instead of h
AlM




Alpha-Beta Pruning

* In 2-player, zero-sum game, we can prune
away subtrees without examining the
entire subtree

(10) (8)

Figure 5.8: An example of alpha-beta pruning. We can backtrack after expanding
the first child of the right choice node for player 2. A. M




Alpha-Beta Pruning

function ALPHABETAPRUNING (node h, real ¢, real /3) returns u, (h)
if h € Z then
| return u,(h) // h is a terminal node

best_util — (2p(h) — 3) X o0 // —oo for player 1; co for player 2
forall « € x(h) do
if p(h) = 1 then
best_util «— max(best_util, ALPHABETAPRUNING (o (h, a), a, 3))
if best_util > 3 then
| return best_util
o +— max(a, best_util)
Ise
best_util «— min(best_util, ALPHABETAPRUNING (o (h,a), cv, /7))
if best_util < « then
| return best_util
| 3« min(3, best_util)

re_turn best_util

Figure 5.7: The alpha-beta pruning algorithm. It is invoked at the root node h as
ALPHABETAPRUNING(h, —00, 20). AI‘M




Alpha-Beta Pruning

In 2-player, zero-sum game, we can prune away
subtrees without examining the entire subtree

Best case: O(b™?) time complexity. Random case:
O(b3m/4)

Exponential improvement, but still infeasible for
something like chess

In practice, chess engines do a limited depth alpha-
beta pruning, using some evaluation function for an
Internal node as If it were a leaf

AIIM




Backward Induction,
Criticism

(0,2) (3.1)  (2.4) (4,3)

Figure 5.9: The Centipede game.
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