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Lemke-Howson 
Algorithm 
• 2-player, general sum games
• Algorithm is for solving linear 

complementarity programs
• Searches vertices of strategy simplices 

(like the simplex algorithm for solving 
LPs)

• Best response condition: Let B be the payoff matrix for 
Player 1. Let x, y be mixed strategies for player 1, 2. x is a 

best response iff 
x

i
 > 0  (By)→

i
 = u = max{ (By)

k
 | k in A

1
}
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Lemke-Howson – 
Properties
• Guaranteed to find a NE
• Alternative proof of the existence of NE
• Path after initial move is unique. Only 

nondeterminism is in first move
• All paths from the starting point to a NE 

can be exponential (algorithm is provably 
exponential)

• No way to assess how close we are to a NE



Lemke-Howson – 
Implementation
• How to compute vertices / labels of the 

strategy simplices?
• We will only compute the vertices along 

the path traveled in online fashion



Lemke-Howson – 
Pseudocode



The LCP Formulation
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Example



Lemke-Howson – 
Example
• Recall: only one of r

1 
, x

1
’ can be nonzero

• All slacks nonzero → all probs. = 0.

• For first move, arbitrarily pick x
2
’ to enter

• Since s
5
 clashes with x

2
’, s

5
 must leave. (4.21) becomes:



Lemke-Howson – 
Example

• By the algorithm rule, since s
5
 just left, y

5
’ must be next to enter

• All of r
1
, r

2
, r

3
 clash with y

5
’

• Have to apply the minimum ratio test

• u is entering variable, c is a constant, T is term with all other variables

• Variable to leave satisfies min |q/c|

• In this case, r
1
 



Lemke-Howson – 
Example

• r
1
 leaves, yielding 4.23

• So x
1
’ must enter. Clashes with s

4
 only. So s

4
 leaves. 4.22 updates to:

• Next, y
4
’ must enter. r2 and r3 clash, min. ratio gives r2 must leave



Lemke-Howson – 
Example

• On the LHS, a non-zero variable appears for each action (i.e. either that 
action is played, or it has a slack and is suboptimal). 

• So we’ve solved the LCP. All non-basis variables are 0, so we get x’ = (1, ½, 
0); y’ = (1/12,1/6). Renormalizing to get a probability distribution, x’ = (2/3, 
1/3, 0); y’ = (1/3,2/3). 

• <x’, y’> is our Nash equilibrium.



Support-
Enumeration Method



Heuristic – Searching the 
space of supports

• Suppose we already knew the support of the Nash 
equilibrium. That is, which actions are best 
response.

• Could we then solve for the probabilities we should 
assign to each action?

• Yes – we can write an LP
• So, the CNE problem is reduced to guessing the 

right support
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Feasibility Program



Eliminating Some 
Actions

• We can safely prune any actions that are strictly 
worse than another given the current support:



Support-Enumeration 
Method

•

Faster than Lemke-Howson on most games in the 
literature.
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