
Algorithms to
Compute a Nash

Equilibrium

Lemke-Howson
Algorithm –

Algebraic Approach

Lemke-Howson
Algorithm
• 2-player, general sum games
• Algorithm is for solving linear

complementarity programs
• Searches vertices of strategy simplices

(like the simplex algorithm for solving
LPs)

• Best response condition: Let B be the payoff matrix for
Player 1. Let x, y be mixed strategies for player 1, 2. x is a

best response iff
x

i
 > 0 (By)→

i
 = u = max{ (By)

k
 | k in A

1
}

Lemke-Howson – a
graphical exposition

Lemke-Howson – a
graphical exposition

Lemke-Howson –
Properties
• Guaranteed to find a NE
• Alternative proof of the existence of NE
• Path after initial move is unique. Only

nondeterminism is in first move
• All paths from the starting point to a NE

can be exponential (algorithm is provably
exponential)

• No way to assess how close we are to a NE

Lemke-Howson –
Implementation
• How to compute vertices / labels of the

strategy simplices?
• We will only compute the vertices along

the path traveled in online fashion

Lemke-Howson –
Pseudocode

The LCP Formulation

Lemke-Howson –
Example

Lemke-Howson –
Example
• Recall: only one of r

1
, x

1
’ can be nonzero

• All slacks nonzero → all probs. = 0.

• For first move, arbitrarily pick x
2
’ to enter

• Since s
5
 clashes with x

2
’, s

5
 must leave. (4.21) becomes:

Lemke-Howson –
Example

• By the algorithm rule, since s
5
 just left, y

5
’ must be next to enter

• All of r
1
, r

2
, r

3
 clash with y

5
’

• Have to apply the minimum ratio test

• u is entering variable, c is a constant, T is term with all other variables

• Variable to leave satisfies min |q/c|

• In this case, r
1

Lemke-Howson –
Example

• r
1
 leaves, yielding 4.23

• So x
1
’ must enter. Clashes with s

4
 only. So s

4
 leaves. 4.22 updates to:

• Next, y
4
’ must enter. r2 and r3 clash, min. ratio gives r2 must leave

Lemke-Howson –
Example

• On the LHS, a non-zero variable appears for each action (i.e. either that
action is played, or it has a slack and is suboptimal).

• So we’ve solved the LCP. All non-basis variables are 0, so we get x’ = (1, ½,
0); y’ = (1/12,1/6). Renormalizing to get a probability distribution, x’ = (2/3,
1/3, 0); y’ = (1/3,2/3).

• <x’, y’> is our Nash equilibrium.

Support-
Enumeration Method

Heuristic – Searching the
space of supports

• Suppose we already knew the support of the Nash
equilibrium. That is, which actions are best
response.

• Could we then solve for the probabilities we should
assign to each action?

• Yes – we can write an LP
• So, the CNE problem is reduced to guessing the

right support

Heuristic – Searching the
space of supports

• Suppose we already knew the support of the Nash
equilibrium. That is, which actions are best
response.

• Could we then solve for the probabilities we should
assign to each action?

• Yes – we can write an LP
• So, the CNE problem is reduced to guessing the

right support

Feasibility Program

Eliminating Some
Actions

• We can safely prune any actions that are strictly
worse than another given the current support:

Support-Enumeration
Method

•

Faster than Lemke-Howson on most games in the
literature.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

