Algorithms to Compute a Nash Equilibrium

Lemke-Howson Algorithm – Algebraic Approach

Lemke-Howson Algorithm

- 2-player, general sum games
- Algorithm is for solving linear complementarity programs
- Searches vertices of strategy simplices (like the simplex algorithm for solving LPs)
- Best response condition: Let *B* be the payoff matrix for Player 1. Let *x*, *y* be mixed strategies for player 1, 2. *x* is a best response iff

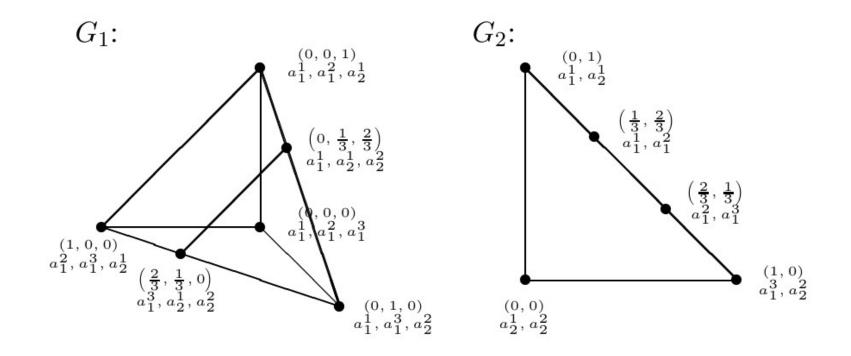
$$x_i > O \rightarrow (By)_i = u = max\{ (By)_k \mid k \text{ in } A_1 \}$$

Lemke-Howson – a graphical exposition

0,1	6, 0
2,0	5,2
3,4	3,3

Figure 4.1: A game for the exposition of the Lemke–Howson algorithm.

Lemke-Howson – a graphical exposition



Lemke-Howson – Properties

- Guaranteed to find a NE
- Alternative proof of the existence of NE
- Path after initial move is unique. Only nondeterminism is in first move
- All paths from the starting point to a NE can be exponential (algorithm is provably exponential)
- No way to assess how close we are to a NE

Lemke-Howson – Implementation

- How to compute vertices / labels of the strategy simplices?
- We will only compute the vertices along the path traveled in online fashion

Lemke-Howson – Pseudocode

initialize the two systems of equations at the origin arbitrarily pick one dependent variable from one of the two systems. This variable enters the basis.

repeat

identify one of the previous basis variables which must leave, according to the minimum ratio test. The result is a new basis.

if this basis is completely labeled then

return the basis

// we have found an equilibrium.

else

the variable dual to the variable that last left enters the basis.

Figure 4.5: Pseudocode for the Lemke-Howson algorithm.

The LCP Formulation

$\sum_{k \in A_2} u_1(a_1^j, a_2^k) \cdot s_2^k + r_1^j = U_1^*$	$\forall j \in A_1$	(4.14)
$\sum_{j \in A_1} u_2(a_1^j, a_2^k) \cdot s_1^j + r_2^k = U_2^*$	$\forall k \in A_2$	(4.15)
$\sum_{j \in A_1} s_1^j = 1, \sum_{k \in A_2} s_2^k = 1$		(4.16)
$s_1^j \ge 0, s_2^k \ge 0$	$\forall j \in A_1, \forall k \in A_2$	(4.17)
$r_1^j \ge 0, r_2^k \ge 0$	$\forall j \in A_1, \forall k \in A_2$	(4.18)
$r_1^j \cdot s_1^j = 0, r_2^k \cdot s_2^k = 0$	$\forall j \in A_1, \forall k \in A_2$	(4.19)

0, 1	6, 0
2, 0	5,2
3,4	3,3

Figure 4.1: A game for the exposition of the Lemke–Howson algorithm.

• Recall: only one of r_1 , x_1 ' can be nonzero

• All slacks nonzero \rightarrow all probs. = 0.

- For first move, arbitrarily pick x_2 ' to enter
- Since s_5 clashes with x_2 ', s_5 must leave. (4.21) becomes:

$$\begin{array}{rcrcrcrcrc} s_4 &=& 1 & -x_1' & -4x_3' \\ x_2' &=& \frac{1}{2} & & -\frac{3}{2}x_3' & -\frac{1}{2}s_5 \end{array}$$

$$\begin{array}{rcrcrcrcrc}
r_1 &=& 1 & -6y'_5 \\
r_2 &=& 1 & -2y'_4 & -5y'_5 \\
r_3 &=& 1 & -3y'_4 & -3y'_5 \\
\end{array} \tag{4.20}$$

$$\begin{array}{rcrcrcrcrcrc}
s_4 &=& 1 & -x'_1 & -4x'_3 \\
x'_2 &=& \frac{1}{2} & & -\frac{3}{2}x'_3 & -\frac{1}{2}s_5 \\
\end{array}$$

- By the algorithm rule, since s_5 just left, y_5 ' must be next to enter
- All of r₁, r₂, r₃ clash with y₅'
- Have to apply the minimum ratio test

$$v = c + qu + T_{\rm s}$$

- u is entering variable, c is a constant, T is term with all other variables
- Variable to leave satisfies *min* |q/c|
- In this case, r₁

$$y'_{5} = \frac{1}{6} -\frac{1}{6}r_{1}$$

$$r_{2} = \frac{1}{6} -2y'_{4} +\frac{5}{6}r_{1}$$

$$r_{3} = \frac{1}{2} -3y'_{4} +\frac{1}{2}r_{1}$$

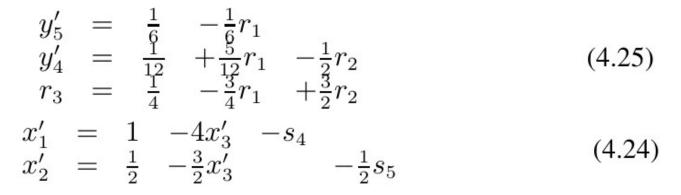
$$s_{4} = 1 -x'_{1} -4x'_{3}$$

$$x'_{2} = \frac{1}{2} -\frac{3}{2}x'_{3} -\frac{1}{2}s_{5}$$
(4.22)

- r₁ leaves, yielding 4.23
- So x_1 ' must enter. Clashes with s_4 only. So s_4 leaves. 4.22 updates to:

$$\begin{array}{rcl} x_1' &=& 1 & -4x_3' & -s_4 \\ x_2' &=& \frac{1}{2} & -\frac{3}{2}x_3' & & -\frac{1}{2}s_5 \end{array} \tag{4.24}$$

• Next, y_4 ' must enter. r2 and r3 clash, min. ratio gives r2 must leave



- On the LHS, a non-zero variable appears for each action (i.e. either that action is played, or it has a slack and is suboptimal).
- So we've solved the LCP. All non-basis variables are 0, so we get $x' = (1, \frac{1}{2}, 0)$; y' = (1/12, 1/6). Renormalizing to get a probability distribution, x' = (2/3, 1/3, 0); y' = (1/3, 2/3).
- <x', y'> is our Nash equilibrium.

Support-Enumeration Method

Heuristic – Searching the space of supports

- Suppose we already knew the support of the Nash equilibrium. That is, which actions are best response.
- Could we then solve for the probabilities we should assign to each action?
- Yes we can write an LP
- So, the CNE problem is reduced to guessing the right support

Heuristic – Searching the space of supports

- Suppose we already knew the support of the Nash equilibrium. That is, which actions are best response.
- Could we then solve for the probabilities we should assign to each action?
- Yes we can write an LP
- So, the CNE problem is reduced to guessing the right support

Feasibility Program

Given a support profile $\sigma = (\sigma_1, \sigma_2)$

$$\sum_{a_{-i}\in\sigma_{-i}} p(a_{-i})u_i(a_i, a_{-i}) = v_i \qquad \forall i \in \{1, 2\}, a_i \in \sigma_i \qquad (4.26)$$

$$\sum_{a_{-i}\in\sigma_{-i}} p(a_{-i})u_i(a_i, a_{-i}) \leq v_i \qquad \forall i \in \{1, 2\}, a_i \notin \sigma_i \qquad (4.27)$$

$$p_i(a_i) \geq 0 \qquad \forall i \in \{1, 2\}, a_i \in \sigma_i \qquad (4.28)$$

$$p_i(a_i) = 0 \qquad \forall i \in \{1, 2\}, a_i \notin \sigma_i \qquad (4.29)$$

$$\sum_{a_i\in\sigma_i} p_i(a_i) = 1 \qquad \forall i \in \{1, 2\} \qquad (4.30)$$

Eliminating Some Actions

• We can safely prune any actions that are strictly worse than another given the current support:

Definition 4.2.2 (Conditionally strictly dominated action) An action $a_i \in A_i$ is conditionally strictly dominated, given a profile of sets of available actions $R_{-i} \subseteq A_{-i}$ for the remaining agents, if the following condition holds: $\exists a'_i \in A_i \ \forall a_{-i} \in R_{-i}$: $u_i(a_i, a_{-i}) < u_i(a'_i, a_{-i})$.

Support-Enumeration Method

forall support size profiles $x = (x_1, x_2)$, sorted in increasing order of, first, $|x_1 - x_2|$ and, second, $(x_1 + x_2)$ **do forall** $\sigma_1 \subseteq A_1$ s.t. $|\sigma_1| = x_1$ **do** $A'_2 \leftarrow \{a_2 \in A_2 \text{ not conditionally dominated, given } \sigma_1 \}$ **if** $\nexists a_1 \in \sigma_1$ conditionally dominated, given A'_2 **then forall** $\sigma_2 \subseteq A'_2$ s.t. $|\sigma_2| = x_2$ **do if** $\nexists a_1 \in \sigma_1$ conditionally dominated, given σ_2 and TGS is satisfiable for $\sigma = (\sigma_1, \sigma_2)$ **then L return** the solution found; it is a NE

Figure 4.6: The SEM algorithm

Faster than Lemke-Howson on most games in the literature.

