Preferences and utility

Preferences and utility

- Why should a real-valued utility function be enough to explain preferences?
- Why should an agent's response to uncertainty be characterized by the expected value of utility?
- Preferences

Preferences and utility

- Let O be a finite set of outcomes. For any pair o₁, o₂ ∈ O:
 - $o_1 \succeq o_2$
 - $o_1 \sim o_2$
 - $o_1 \succ o_2$
- How do preferences interact with uncertainty?
- Lotteries: $[p_1:o_1,\ldots,p_k:o_k]$

Axiom 3.1.1 (Completeness) $\forall o_1, o_2, o_1 \succ o_2 \text{ or } o_2 \succ o_1 \text{ or } o_1 \sim o_2$.

Axiom 3.1.1 (Completeness) $\forall o_1, o_2, o_1 \succ o_2 \text{ or } o_2 \succ o_1 \text{ or } o_1 \sim o_2$.

Axiom 3.1.2 (Transitivity) If $o_1 \succeq o_2$ and $o_2 \succeq o_3$, then $o_1 \succeq o_3$.

Axiom 3.1.3 (Substitutability) If $o_1 \sim o_2$, then for all sequences of one or more outcomes o_3, \ldots, o_k and sets of probabilities p, p_3, \ldots, p_k for which $p + \sum_{i=3}^k p_i = 1$, $[p:o_1, p_3:o_3, \ldots, p_k:o_k] \sim [p:o_2, p_3:o_3, \ldots, p_k:o_k]$.

Let $P_{\ell}(o_i)$ denote the probability that outcome o_i is selected by lottery ℓ . For example, if $\ell = [0.3 : o_1; 0.7 : [0.8 : o_2; 0.2 : o_1]]$, then $P_{\ell}(o_1) = 0.44$ and $P_{\ell}(o_3) = 0$.

Axiom 3.1.4 (Decomposability) If $\forall o_i \in O$, $P_{\ell_1}(o_i) = P_{\ell_2}(o_i)$ then $\ell_1 \sim \ell_2$.

Axiom 3.1.5 (Monotonicity) If $o_1 \succ o_2$ and p > q then $[p : o_1, 1 - p : o_2] \succ [q : o_1, 1 - q : o_2]$.

Lemma 3.1.6 If a preference relation \succeq satisfies the axioms completeness, transitivity, decomposability, and monotonicity, and if $o_1 \succ o_2$ and $o_2 \succ o_3$, then there exists some probability p such that for all p' < p, $o_2 \succ [p' : o_1; (1 - p') : o_3]$, and for all p'' > p, $[p'' : o_1; (1 - p'') : o_3] \succ o_2$.

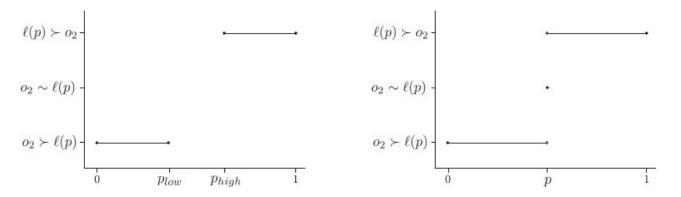


Figure 3.2: Relationship between o_2 and $\ell(p)$.

Proof.

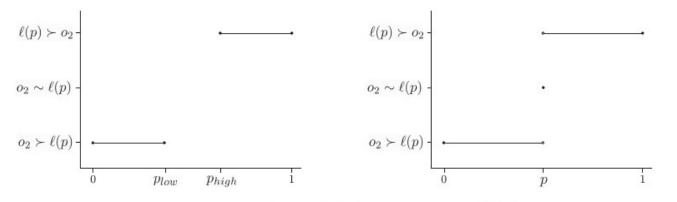


Figure 3.2: Relationship between o_2 and $\ell(p)$.

Axiom 3.1.7 (Continuity) If $o_1 \succ o_2$ and $o_2 \succ o_3$, then $\exists p \in [0, 1]$ such that $o_2 \sim [p : o_1, 1 - p : o_3]$.

Characterization

Theorem 3.1.8 (von Neumann and Morgenstern, 1944) If a preference relation \succeq satisfies the axioms completeness, transitivity, substitutability, decomposability, monotonicity, and continuity, then there exists a function $u : \mathcal{L} \mapsto [0, 1]$ with the properties that

- 1. $u(o_1) \ge u(o_2)$ iff $o_1 \succeq o_2$, and
- 2. $u([p_1:o_1,\ldots,p_k:o_k]) = \sum_{i=1}^k p_i u(o_i).$

