Interlaced Greedy Algorithm for Maximization of Submodular Functions in Nearly Linear Time

Alan Kuhnle
Florida State University

Submodular Functions

Definition A function \(f : 2^U \rightarrow \mathbb{R}_{\geq 0} \) defined on subsets of a ground set \(U \) of size \(n \) is **submodular** if it possesses the following property:

- For all \(A \subseteq B \subseteq U \) and \(x \notin B \),
 \[
 f(A \cup \{x\}) - f(A) \geq f(B \cup \{x\}) - f(B)
 \]

Maximization Subject To Cardinality Constraint

Definition Given \(k \), submodular function \(f : 2^U \rightarrow \mathbb{R}_{\geq 0} \), find

\[
\text{argmax}_{|S| \leq k} f(S). \quad \text{(MCC)}
\]

Example Social Network Monitoring. Suppose we have a social network \(G = (V, E) \), where each edge \((u, v)\) has weight \(w(u, v)\) according to how much content (e.g. status updates, news stories, videos) is shared from \(u \) to \(v \). Let \(S \subseteq V \), and define

\[
f(S) = \sum_{u \in S, v \notin S} w(u, v).
\]

Intuitively, \(f(S) \) encodes how much content flows from \(S \) to \(V \setminus S \).

Then MCC asks for the set of size at most \(k \) through which the most content passes.

Other Applications
- Video summarization
- Movie recommendation
- Revenue maximization

Interlaced Greedy Approach

Two standard greedy procedures are interlaced. That is, elements are greedily selected into one of two sets in alternating fashion.

- Maintain two disjoint sets \(A \) and \(B \), initially empty.
- For \(k \) iterations, the best element \((\text{argmax}_{x \in A} f_x(A))\) is selected to add to \(A \), then the best element \((\text{argmax}_{x \notin A} f_x(B))\) is added to \(B \).
- For technical reasons, perform an analogous procedure starting from \(A = B = \{a_0\} \).

Stealing Heuristic

- From interlacing, unequivocally good elements may be divided between \(A \) and \(B \).
- Let \(C \) be the set returned and \(U \) be the set of elements selected by any greedy procedure but not included in \(C \). Sort \(C \) by increasing value of \(f(C) - f(C \setminus \{c\}) \) and sort \(U \setminus C \) by decreasing value of \(f(C \cup \{x\}) - f(C) \). In one pass through \(C \), test if swapping element \(c_i \in C \) with \(x_i \in U \setminus C \) yields an improvement in \(f(C) \).
- Time complexity: \(O(k \log k) \).

Speeding it up

- Standard greedy \(\rightarrow \) thresholded greedy procedures
- Thresholded greedy procedure: in one pass through \(U \), add elements whose marginal gain exceed a threshold \(\tau \). Repeat for \(O(\log k) \) suitably chosen thresholds.

Ratio: \(1/4 - \delta \)

Time complexity: \(O\left(\frac{n}{\delta} \log \left(\frac{k}{\delta}\right)\right)\)

Experimental Evaluation

- (a) BA, Cut Value
- (b) BA, Function Queries

Figure 1: Objective value and runtime for cardinality-constrained maxcut.

- (a) ER instance, \(n = 1000 \)
- (b) BA instance, \(n = 10000 \)

Figure 2: Effect of stealing procedure on solution quality of FIG.

Contact: akuhle@fsu.edu, https://www.alankuhnle.com/