Network Resilience and the Length-Bounded Multicut Problem: Reaching the Dynamic Billion-Scale with Guarantees

Alan Kuhnle1,*, Victoria G. Crawford1, My T. Thai1

1Computer and Information Science and Engineering, University of Florida, Gainesville, FL

* kuhnle@ufl.edu

ACM SIGMETRICS 2018
LB MULTICUT: Given a network and a set of pairs of vertices, identify the minimum-size set of vertices (edges) whose removal will sufficiently separate each pair.

LB MULTICUT: Given a network and a set of pairs of vertices, identify the minimum-size set of vertices (edges) whose removal will sufficiently separate each pair.

“sufficiently separate” $\rightarrow d(s, t) > T$

Introduction

-
 - **LB MULTICUT**: Given a network and a set of pairs of vertices, identify the minimum-size set of vertices (edges) whose removal will sufficiently separate each pair.
 - “sufficiently separate” → $d(s, t) > T$
 - **Motivation**: Network robustness.

LB MULTICUT: Given a network and a set of pairs of vertices, identify the minimum-size set of vertices (edges) whose removal will sufficiently separate each pair

“sufficiently separate” $\rightarrow d(s, t) > T$

Motivation: Network robustness

Distance as proxy for network functionality

Network Resilience and the Length-Bounded Multicut Problem: Reaching the Dynamic Billion-Scale with Guarantees

Introduction

LB MULTICUT: Given a network and a set of pairs of vertices, identify the minimum-size set of vertices (edges) whose removal will sufficiently separate each pair

“sufficiently separate” → $d(s, t) > T$

Motivation: Network robustness

Distance as proxy for network functionality

For example, distance could encode packet loss in a communication network or travel time in a road network

LB MULTICUT: Given a network and a set of pairs of vertices, identify the minimum-size set of vertices (edges) whose removal will sufficiently separate each pair.

- “sufficiently separate” $\rightarrow d(s, t) > T$

Motivation: Network robustness

Distance as proxy for network functionality

For example, distance could encode packet loss in a communication network or travel time in a road network.

- T can be input (LB MULTICUT) or fixed (T-MULTICUT)

Vulnerability assessment: LB MULTICUT

Figure: $S = \{(0, 12)\}, \ T = 5.$
Vulnerability assessment: LB MULTICUT

Figure: Want: min-size set of edges to remove s.t. $d(0, 12) > 5$
Vulnerability assessment: LB MULTICUT

Figure: Optimal solution has 2 edges.
Vulnerability assessment: LB MULTICUT

Figure: Classical cut of \((s, t)\) must take three edges
Vulnerability assessment: pseudo-separation

For multicut, vertex and edge versions are not equivalent.

Figure: Approximation results

<table>
<thead>
<tr>
<th>Problem</th>
<th>Undirected</th>
<th>Directed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUT (both)</td>
<td>1^2</td>
<td>1</td>
</tr>
<tr>
<td>MULTICUT (edge)</td>
<td>$O(\log k)^3$</td>
<td>$O(n^{11/23})^4$</td>
</tr>
<tr>
<td>P. MULTICUT (edge)</td>
<td>$O(\log^2 n \log \log n)^5$</td>
<td>-</td>
</tr>
<tr>
<td>MULTICUT (vertex)</td>
<td>$O(\log k)^6$</td>
<td>-</td>
</tr>
<tr>
<td>T-CUT (both)</td>
<td>$T/2^7$</td>
<td>$T/2^7$</td>
</tr>
<tr>
<td>T-MULTICUT (both)</td>
<td>$T + 1^8$</td>
<td>$T + 1^8$</td>
</tr>
<tr>
<td>P. T-MULTICUT (both)</td>
<td>$(T + 1)/\epsilon^8$</td>
<td>$(T + 1)/\epsilon^8$</td>
</tr>
</tbody>
</table>

2. Elias, Feinstein, and Shannon; Ford, Fulkerson (1956)
Results of Kuhnle et al. (2017):
Results of Kuhnle et al. (2017):
- Formulated vulnerability assessment based upon LB MULTICUT
Results of Kuhnle et al. (2017):
- Formulated vulnerability assessment based upon LB MULTICUT
- Provided approximation algorithms when T is fixed parameter
Results of Kuhnle et al. (2017):
- Formulated vulnerability assessment based upon LB MULTICUT
- Provided approximation algorithms when T is fixed parameter
 - Require enumeration of all paths of length at most T
• Results of Kuhnle et al. (2017):
 • Formulated vulnerability assessment based upon LB MULTICUT
 • Provided approximation algorithms when T is fixed parameter
 • Require enumeration of all paths of length at most T
 • Approximability lower bound of $2 - \epsilon$ (assuming UGC)
Contributions

- Primal-dual algorithm
Contributions

- Primal-dual algorithm
 - Approximation ratio: T, even when T is input
Contributions

- Primal-dual algorithm
 - Approximation ratio: T, even when T is input
 - Time complexity:
 \[O\left(\frac{k}{D}\left(m + n\log(n)\right)\right) \]

 - Number of pairs
 - Max. degree
 - Dijkstra's alg.
Contributions

- Primal-dual algorithm
 - Approximation ratio: T, even when T is input
 - Time complexity:
 \[
 O\left(\frac{k}{D} \cdot (m + n \log(n))\right)
 \]
 Number of pairs. Max. degree Dijkstra’s alg.

- Inapproximability result:
 \[
 \Omega(T),
 \]
 unless $NP \subseteq BPP$.
Contributions

- Primal-dual algorithm
 - Approximation ratio: T, even when T is input
 - Time complexity:

\[
O\left(\frac{k}{D}, \frac{D}{(m + n \log(n))}\right)
\]

 - Number of pairs. Max. degree. Dijkstra’s alg.

- Inapproximability result:

\[\Omega(T),\]

unless $NP \subseteq BPP$.

- Additional approximation algorithms.
Introduction

Primal-dual approach

- Primal-dual
Primal-dual approach

- **Primal-dual**
 - Until feasible,
Primal-dual approach

- **Primal-dual**
 - Until feasible,
 - remove (i.e. add to solution) an overall shortest path between any pair in S
Primal-dual approach

Primal-dual
- Until feasible,
- remove (i.e. add to solution) an overall shortest path between any pair in S
- To improve solution quality in practice, can prune it
Primal-dual approach

Primal-dual
- Until feasible,
 - remove (i.e. add to solution) an overall shortest path between any pair in S
- To improve solution quality in practice, can prune it
- “fully dynamic”: solution can be updated upon changes in edge weight and vertex insertion / deletion
Primal-dual, example

Figure: $d(0, 12) = 4$, $T = 5$
Primal-dual, example

Figure: Compute shortest path and add all edges into solution.
Primal-dual, example

Figure: Compute shortest path and add all edges into solution.
Primal-dual, example

Figure: $d(0, 12) = 6$, $T = 5$
Primal-dual, example

Figure: So we’re done.
Primal-dual, example

Figure: Can prune edges (5, 6), (6, 7)
Primal-dual, example

Figure: How to update?
Primal-dual, example

Figure: Add (2, 8)
Primal-dual, example

Figure: Add (2, 8)
Introduction

Primal-dual, example

Figure: $d(0, 12) = 5$, $T = 5$
Primal-dual, example

Figure: Add shortest path
Primal-dual, example

Figure: Prune
TAG Algorithm

Strategy:
- Maintains a maximal, edge-disjoint collection U of paths
Network Resilience and the Length-Bounded Multicut Problem: Reaching the Dynamic Billion-Scale with Guarantees

Introduction

TAG Algorithm

Strategy:
- Maintains a maximal, edge-disjoint collection U of paths
- Number of paths lower bounds OPT
TAG Algorithm

Strategy:
- Maintains a maximal, edge-disjoint collection U of paths
- Number of paths lower bounds OPT
- Ratio T
Theorem

Let $T \geq 16$. Unless $\text{NP} \subseteq \text{BPP}$, there is no polynomial-time algorithm to approximate T-LB MULTICUT within a factor of

$$\left\lfloor \frac{T}{6} \right\rfloor - 1 - \epsilon,$$

for any $\epsilon > 0$.

- Approximation-preserving reduction from Cycle Interdiction Problem: minimum set of edges to intersect all cycles of length at most r. Guruswami et al. showed lower bound of

$$\left\lfloor \frac{r}{2} \right\rfloor - 1 - \epsilon.$$
Theorem

Let $T \geq 16$. Unless $NP \subseteq BPP$, there is no polynomial-time algorithm to approximate T–LB MULTICUT within a factor of

$$\left\lfloor \frac{T}{6} \right\rfloor - 1 - \epsilon,$$

for any $\epsilon > 0$.

- Approximation-preserving reduction from Cycle Interdiction Problem: minimum set of edges to intersect all cycles of length at most r. Guruswami et al. showed lower bound of

$$\left\lfloor \frac{r}{2} \right\rfloor - 1 - \epsilon.$$

- Requires $\Omega(n)$ pairs.
Theorem

Let $T \geq 16$. Unless $NP \subseteq BPP$, there is no polynomial-time algorithm to approximate T–LB MULTICUT within a factor of

$$\left\lfloor \frac{T}{6} \right\rfloor - 1 - \epsilon,$$

for any $\epsilon > 0$.

- Approximation-preserving reduction from Cycle Interdiction Problem: minimum set of edges to intersect all cycles of length at most r. Guruswami et al. showed lower bound of

$$\left\lfloor \frac{r}{2} \right\rfloor - 1 - \epsilon.$$

- Requires $\Omega(n)$ pairs.
- For single pair T-CUT, best lower bound is currently \sqrt{T}.
Experimental Evaluation

Figure: Static experiments on ER 100 networks.
Experimental Evaluation

Table: Real-world traces.

| Network | $|V|$ | $|E|$ | $\hat{d}(x, y)$ | Weighted |
|-----------|--------------|--------------|----------------|----------|
| Gnutella | 6.301×10^3 | 2.078×10^4 | 4.63 | No |
| Enron | 3.669×10^4 | 1.838×10^5 | 4.04 | No |
| RoadSF | 1.748×10^5 | 2.218×10^5 | 3635.29 | Yes |
| Google | 8.757×10^5 | 4.322×10^6 | 6.33 | No |
| Skitter | 1.696×10^6 | 1.109×10^7 | 13.00 | Yes |
| Friendster| 1.248×10^8 | 1.806×10^9 | 4.99 | No |
Figure: RoadSF: (a) Solution Size, (b) Running time vs. number of pairs k
Table: Static average add/remove results (TAG).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Addition time (s)</th>
<th>Removal time (s)</th>
<th>Addition size</th>
<th>Removal size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gnutella</td>
<td>0.6</td>
<td>0.2</td>
<td>125.4</td>
<td>30.0</td>
</tr>
<tr>
<td>Enron</td>
<td>21.6</td>
<td>3.9</td>
<td>269.8</td>
<td>76.2</td>
</tr>
<tr>
<td>Google</td>
<td>3765.9</td>
<td>696.4</td>
<td>617.0</td>
<td>155.4</td>
</tr>
<tr>
<td>Friendster</td>
<td>38127.0</td>
<td>32465.0</td>
<td>94.0</td>
<td>49.6</td>
</tr>
</tbody>
</table>

Table: Dynamic average add/remove results (TAG).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Addition time (ms)</th>
<th>Removal time (ms)</th>
<th>Addition loss</th>
<th>Removal loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gnutella</td>
<td>1.0</td>
<td>1.0</td>
<td>6.7%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Enron</td>
<td>3.5</td>
<td>0.7</td>
<td>7.0%</td>
<td>15.5%</td>
</tr>
<tr>
<td>Google</td>
<td>110.0</td>
<td>12.0</td>
<td>20.3%</td>
<td>13.3%</td>
</tr>
<tr>
<td>Friendster</td>
<td>1100.0</td>
<td>0.2</td>
<td>0.0%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>
Summary

- Scalable and dynamic algorithm with ratio T
Summary

- Scalable and dynamic algorithm with ratio T
- Lower bound of $T/6 - 1$, $T \geq 16$
Summary

- Scalable and dynamic algorithm with ratio T
- Lower bound of $T/6 - 1$, $T \geq 16$
- Implementations available:
 https://gitlab.com/kuhnle/multi-pcut
Summary

- Scalable and dynamic algorithm with ratio T
- Lower bound of $T/6 - 1$, $T \geq 16$
- Implementations available: https://gitlab.com/kuhnle/multi-pcut
- Future work: improve lower bound or better approximation?
Thank you! Questions?

Alan Kuhnle, kuhnle@ufl.edu
References I

An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms.

Improved approximation for directed cut problems.

A unified approach to approximating partial covering problems.

Multiway Cuts in Directed and Node Weighted Graphs.

Length-Bounded Cuts and Flows.

Pseudo-separation for assessment of structural vulnerability of a network.